ON A DEPTH FORMULA FOR MODULES OVER LOCAL RINGS

SANGKI CHOI* DEPARTMENT OF MATHEMATICS EDUCATION KON-KUK UNIVERSITY, SEOUL, KOREA

AND

SRIKANTH IYENGAR** 1993 NETTLEBROOK ST. WESTLAKE VILLAGE, CA 91361

ABSTRACT. We prove that for modules M and N over a local ring R, the depth formula: depth_R M + depth_R N - depth R = depth_R Tor^R_s(M, N) - s, where $s = \sup\{i \mid \operatorname{Tor}_{i}^{R}(M, N) \neq 0\}$, holds under certain conditions. This adds to the list cases where the depth formula, which extends the classical Auslander-Buchsbaum equality, is satisfied.

INTRODUCTION

The celebrated Auslander-Buchsbaum equality asserts that if a finitely generated module M over a noetherian local ring R has finite projective dimension, then depth_R $M + pd_R M = depth R$. There have been a number of generalizations of this formula, one of which is due to Auslander [1, 1.2] himself, who proved that with M as before and N a finitely generated R-module, if for $s = \sup\{n \mid \operatorname{Tor}_n^R(M, N) \neq 0\}$ either s = 0 or depth_R $\operatorname{Tor}_R^R(M, N) \leq 1$, then

(*) $\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth}_{R} = \operatorname{depth}_{R} \operatorname{Tor}_{s}^{R} (M, N) - s.$

Observe that with N = k, the residue field of R, we recover the Auslander-Buchsbaum equality. As a matter of fact, Auslander established that depth_R $N = depth_R \operatorname{Tor}_s^R(M, N) + pdM - s$, which, in view of the Auslander-Buchsbaum equality, translates to the formula above.

Let us note that all the terms in (*) are defined and finite for any pair of R-modules M and N as long as $\sup\{n \mid \operatorname{Tor}_{n}^{R}(M, N) \neq 0\} < \infty$. This leads us to the following

Problem. Let M and N be finitely generated modules over a noetherian local ring R such that $s = \sup\{n \mid \operatorname{Tor}_{n}^{R}(M, N) \neq 0\}$ is finite. Discover conditions under which (*) holds.

When this occurs, we say that the *depth formula holds for* M and N. Over the last few years it has emerged that if M has *finite CI-dimension* and either one of the following conditions holds:

- (1) s = 0;
- (2) depth_R Tor^R_s $(M, N) \leq 1$,

 $^{1991\} Mathematics\ Subject\ Classification.\ 13C15,\ 18G15.$

 $Key\ words\ and\ phrases.\ Auslander-Buschsbaum,\ depth,\ complete\ intersection\ dimension.\\ *Email-address:\ schoi@kkucc.konkuk.ac.kr.$

^{**}*Current address:* Pure Mathematics, University of Sheffield, S3 7RH, UK *Email-address:* s.iyengar@shef.ac.uk.

then the depth formula (*) holds for M and N.

The description of modules of finite CI-dimension, first identified by Avramov, Gasharov, and Peeva, [4], is deferred to Definition 2; for now, we note only that if either M has finite projective dimension or R is a complete intersection, then M has finite CI-dimension. In particular, these results extend that of Auslander.

The result above was established by Huneke and R. Wiegand [7, 2.5] in the particular case when the ring R is a complete intersection and s = 0, also confer [8, 4.3]; the general case is due to Araya and Yoshino [3, 2.5].

We add to this list of cases when the depth formula holds. More precisely, we prove that (*) holds also when M has finite CI-dimension and for some prime ideal $\mathfrak{p} \in \operatorname{Ass}\operatorname{Tor}_s^R(M,N)$, one has

 $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \geq \operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R.$

This is the content of Corollary 4. This result is deduced from the more general, and easier to digest, Theorem 3: If M has finite CI-dimension and $\sup\{n \mid \operatorname{Tor}_n^R(M,N) \neq 0\} = s < \infty$, then

$$\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \geq -s$$

with equality if and only if depth_R $\operatorname{Tor}_{s}^{R}(M, N) = 0$. This fact is well known in the special case when M has finite projective dimension, and contains a recent result of Jorgensen [9, 2.2].

Now, in [1] Auslander had asked if the depth formula (*) holds for any pair of modules M and N, given that M has finite projective dimension, but Murthy [12, Pg. 565] gave examples to the contrary. Nevertheless, as is explained in Remark 7, for such an M one has always an inequality

$$\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \geq \inf \{\operatorname{depth}_{R} \operatorname{Tor}_{i}^{R}(M, N) - i\}.$$

Thus, it is not unreasonable to ask if there is *some* integer i such that

$$\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth}_{R} = \operatorname{depth}_{R} \operatorname{Tor}_{i}^{R} (M, N) - i$$

Note that this is a weaker version of the depth formula. Unfortunately, one cannot expect this formula to hold in general, even over regular local rings where all modules have finite projective dimension; this is the content of Proposition 11.

Results and proofs

The reader is referred to Matsumura [11] for basic definitions and notation. In this note, it seems expedient to introduce the following

Notation 1. For modules M and N over a ring R, set

$$\operatorname{fd}_R(M, N) = \sup\{n \mid \operatorname{Tor}_n^R(M, N) \neq 0\}.$$

In particular, if $\operatorname{Tor}_n^R(M, N) = 0$ for all n, then $\operatorname{fd}_R(M, N) = -\infty$, else $0 \leq \operatorname{fd}_R(M, N) \leq \infty$. When R is local, by which we understand that it is also noetherian, and k is its residue field, $\operatorname{fd}_R(M, k)$ is the flat dimension of M, which, when M is finitely generated, equals its projective dimension $\operatorname{pd}_R M$. Moreover, for such an M, the number $\operatorname{fd}_R(M, N)$ is finite for each finitely generated N.

Next, we recall the following definition, which surfaced in [4]:

Definition 2. A module M over a local ring R is said to be of *finite CI-dimension* if there is a diagram of local homomorphisms $R \to R' \leftarrow Q$ such that $R \to R'$ is flat, $R' = Q/(x_1, \ldots, x_c)$ for a regular sequence x_1, \ldots, x_c in Q and $pd_Q(M \otimes_R R') < \infty$.

There are two important classes of examples: Modules with finite projective dimension, when R' = Q = R, and modules over complete intersections, when R' is the completion of R at its maximal ideal and Q is any Cohen presentation of R'.

We are now ready to state our main result; its proof is deferred to 9.

Theorem 3. Let R be a local ring, and let M and N be finitely generated modules such that $\operatorname{fd}_R(M, N) = s < \infty$. If M has finite CI-dimension, then

 $\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \ge -s$

with equality if and only if depth_R $\operatorname{Tor}_{s}^{R}(M, N) = 0$.

Here is the depth formula advertised in the introduction:

Corollary 4. Let R, M, and N be as above. If for a prime $\mathfrak{p} \in Ass \operatorname{Tor}_{s}^{R}(M, N)$ depth_{$R_{\mathfrak{p}}$} $M_{\mathfrak{p}}$ + depth_{$R_{\mathfrak{p}}$} $N_{\mathfrak{p}}$ - depth $R_{\mathfrak{p}} \geq depth_{R} M$ + depth_R N - depth R, then

 $\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth}_{R} R = -s \quad and \quad \operatorname{depth}_{R} \operatorname{Tor}_{s}^{R} (M, N) = 0.$

Proof. Since $\operatorname{Tor}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = \operatorname{Tor}^{R}(M, N)_{\mathfrak{p}}$, one has $\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = \operatorname{fd}_{R}(M, N)$ and $\operatorname{depth}_{R_{\mathfrak{p}}}\operatorname{Tor}_{s}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = 0$. This yields the last of the following series of (in)equalities; the first and the third are by Theorem 3, and the second is the hypothesis.

$$\begin{split} -\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) &= \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \\ &\geq \operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \\ &\geq -\operatorname{fd}_{R}(M, N) \\ &= -\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) \end{split}$$

Therefore, $\operatorname{depth}_R M + \operatorname{depth}_R N - \operatorname{depth} R = -\operatorname{fd}_R(M, N)$, and this implies, thanks to Theorem 3, that $\operatorname{depth}_R \operatorname{Tor}_s^R(M, N) = 0$

Remark 5. It may be worth pointing out that inequality hypothesised in Corollary 4 is satisfied under either one of the following conditions:

- (a) depth $N_{\mathfrak{p}} \ge \operatorname{depth} N$ for a prime $\mathfrak{p} \in \operatorname{Ass} \operatorname{Tor}_{s}^{R}(M, N)$; this holds, for example, when depth N = 0.
- (b) G-dim_R N, the Gorenstein dimension of N, cf. [2], is finite and depth $R_{\mathfrak{p}} \geq$ depth R for a prime $\mathfrak{p} \in \operatorname{Ass} \operatorname{Tor}_{s}^{R}(M, N)$.

Indeed, since M has finite CI-dimension, depth $M_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \geq \operatorname{depth}_R M - \operatorname{depth} R$, confer [4, 1.4] and [4, 1.6]. Given this fact, it immediate that Condition (a) above implies the desired inequality. In the case of (b), note that

$$\begin{aligned} \operatorname{depth} R_{\mathfrak{p}} - \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} &= \operatorname{G-dim}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} & \operatorname{by} [2, \, 4.13b] \\ &\leq \operatorname{G-dim}_{R} N & \operatorname{by} [2, \, 4.15] \\ &= \operatorname{depth} R - \operatorname{depth}_{R} N & \operatorname{by} [2, \, 4.13b] \end{aligned}$$

Rearranging terms yields depth $N_{\mathfrak{p}} - \operatorname{depth}_{R} N \ge \operatorname{depth} R_{\mathfrak{p}} - \operatorname{depth} R$; in particular depth $N_{\mathfrak{p}} \ge \operatorname{depth}_{R} N$, so that (a) holds.

Here is the local version of Theorem 3; it implies that

 $\inf \{ \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Spec} R \} = -\operatorname{fd}_{R}(M, N) \,,$

which has been observed by Jorgensen [9, 2.2].

Corollary 6. Let M and N be finitely generated modules over a local ring R. If $fd_R(M,N) < \infty$ and M has finite CI-dimension, then

 $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \ge -\operatorname{fd}_{R}(M, N) \quad for \quad \mathfrak{p} \in \operatorname{Spec} R,$ with equality if and only if $\mathfrak{p} \in \operatorname{Ass} \operatorname{Tor}_{s}^{R}(M, N)$.

Proof. Since M has finite CI-dimension, so does $M_{\mathfrak{p}}$ for any prime $\mathfrak{p} \in \operatorname{Spec} R$, cf. [4, 1.6], and hence

 $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} \ge -\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) \ge -\operatorname{fd}_{R}(M, N),$

where the inequality on the left is the theorem above, and the one on the right is a consequence of the isomorphism $\operatorname{Tor}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = \operatorname{Tor}^{R}(M, N)_{\mathfrak{p}}$. Furthermore, equality holds if and only if $\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = \operatorname{fd}_{R}(M, N)$ and $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} - \operatorname{depth} R_{\mathfrak{p}} = -\operatorname{fd}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$, which translates to, by Theorem 3, the condition that $\mathfrak{p} \in \operatorname{Ass} \operatorname{Tor}_{R}^{R}(M, N)$ for $s = \operatorname{fd}_{R}(M, N)$.

The proof of Theorem 3 is based on the following observations.

Remark 7. Let M and N be finitely generated modules over a local ring R.~ If $\mathrm{pd}_R\,M<\infty,$ then

 $\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \geq \inf \left\{ \operatorname{depth}_{R} \operatorname{Tor}_{i}^{R} (M, N) - i \right\},$

with equality if the infimum is achieved at $i = \mathrm{fd}_R(M, N)$. (Note: The depth of the zero module is infinity.)

Indeed, Foxby [6, 12.ai] and Iyengar [8, 2.2] prove that depth_R($M \otimes_{R}^{\mathbf{L}} N$) = depth_R $N - \operatorname{pd}_{R} M$, where $M \otimes_{R}^{\mathbf{L}} N$ denotes $F \otimes_{R} N$, for any free resolution F of M; confer [8] for further details. Thanks to the Auslander-Buchsbaum equality this translates to:

 $\operatorname{depth}_{R}(M \otimes_{R}^{\mathbf{L}} N) = \operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R.$

On the other hand, [8, 2.7.2] applied to the complex $F \otimes_R N$ yields an estimate

 $\operatorname{depth}_{R}(M \otimes_{R}^{\mathbf{L}} N) \geq \inf \{\operatorname{depth}_{R} \operatorname{Tor}_{i}^{R}(M, N) - i\},\$

and [8, 2.3] asserts that equality holds if the infimum is achieved at $fd_R(M, N)$. Combining the preceding equations yields the desired result.

It is useful to note the following special case of the previous remark; it has certainly been observed before, confer [6, 12.ag].

Remark 8. If $\operatorname{pd}_R M < \infty$, then for $s = \operatorname{fd}_R(M, N)$, one has

 $\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth} R \geq -s$

with equality if and only if $\operatorname{depth}_R \operatorname{Tor}_s^R(M, N) = 0$.

9. Proof of Theorem 3. Let $R \to R' \leftarrow Q$ be the diagram of local homomorphisms provided by the finiteness of the CI-dimension of M, cf. 2. Localizing Q and R' at a minimal prime of $\text{Spec}(R'/\mathfrak{m}R')$, where \mathfrak{m} is the maximal ideal of R, we may assume that $\text{depth}(R'/\mathfrak{m}R') = 0$. This allows us to reduce, by passing to Q, to the case where the projective dimension of M is finite.

Indeed, since $R \to R'$ is flat $\operatorname{Tor}^{R'}(M', N') = \operatorname{Tor}^{R}(M, N) \otimes_{R} R'$, where $M' = M \otimes_{R} R'$ and $N' = N \otimes_{R} R'$, so that $\operatorname{fd}_{R'}(M', N') = \operatorname{fd}_{R}(M, N)$, Moreover, the depth of $R'/\mathfrak{m}R'$ is 0, hence [11, 23.3] yields

$$\begin{split} \operatorname{depth} & R' = \operatorname{depth} R \\ & \operatorname{depth}_{R'} M' = \operatorname{depth}_R M \\ & \operatorname{depth}_{R'} N' = \operatorname{depth}_R N \\ & \operatorname{depth}_{R'} \operatorname{Tor}_s^{R'} (M', N') = \operatorname{depth}_R \operatorname{Tor}_s^R (M, N) \end{split}$$

Thus, it suffices to establish the desired result for modules M' and N' over the ring R'. Therefore, by passing to R' we may assume that $R = Q/(x_1, \ldots, x_c)$ with x_1, \ldots, x_c a Q-regular sequence, and that $pd_Q M < \infty$.

In this case, as is well known, $\operatorname{Tor}_{s+c}^{Q}(M, N) = \operatorname{Tor}_{s}^{R}(M, N)$ and $\operatorname{fd}_{Q}(M, N) = s + c$; for example, confer [3, 2.6]. Furthermore, depth $Q = \operatorname{depth} R + c$ and $\operatorname{depth}_{Q} L = \operatorname{depth}_{R} L$ for any *R*-module *L*, so it suffices to prove that

$$\operatorname{depth}_{Q} M + \operatorname{depth}_{Q} N - \operatorname{depth} Q \ge -s - c$$

with equality if and only if $\operatorname{depth}_Q \operatorname{Tor}_{s+c}^Q(M, N) = 0$. Since $\operatorname{pd}_Q M < \infty$, it remains to invoke Remark 8.

Remark 10. The reduction technique employed in the argument above also yields another proof of the result of Arraya and Yoshino [3, 2.5] mentioned in the introduction. Indeed, the only change required is that in the last paragraph of the proof one invokes Remark 7 instead of Remark 8.

As has been explained in the introduction, confer also Remark 7, it is reasonable to seek conditions under which there is some integer i such that

$$\operatorname{depth}_{R} M + \operatorname{depth}_{R} N - \operatorname{depth}_{R} = \operatorname{depth}_{R} \operatorname{Tor}_{i}^{R} (M, N) - i$$

One cannot expect this to hold in general, for the next result identifies a class of examples for which the formula above fails for all i, even when both modules have finite projective dimension.

Proposition 11. Let (R, \mathfrak{m}, k) be a regular local ring and let x_1, \ldots, x_n, y be elements in \mathfrak{m} such that the following conditions are satisfied:

(a) x_1, \ldots, x_n is a regular sequence;

(b) the Cohen-Macaulay defect d of the local ring $R/(x_1, \ldots, x_n, y)$ is at least 3.

Then for the modules $M = R/(x_1, ..., x_n)$ and N = R/(y), one has

$$\begin{split} \operatorname{depth}_R \operatorname{Tor}_0^R(M,N) &= \dim R - n - d \\ \operatorname{depth}_R \operatorname{Tor}_1^R(M,N) &= \dim R - n - d + 2 \\ \operatorname{depth}_R M + \operatorname{depth}_R N - \operatorname{depth} R &= \dim R - n - 1 \,. \end{split}$$

Proof. It is immediate that depth_R $M = \dim R - n$ and depth_R $N = \dim R - 1$; this yields the last equality that we seek. The complex $0 \to R \xrightarrow{y} R \to 0$ is a free resolution of N, so Tor^R (M, N) is the homology of the complex

$$0 \to M \xrightarrow{g} M \to 0$$

Thus, $\operatorname{Tor}_{0}^{R}(M, N) = R/(x_{1}, \ldots, x_{n}, y)$, $\operatorname{Tor}_{1}^{R}(M, N) = \{m \in M \mid y.m = 0\}$, and these fit into exact sequences

$$0 \to K \to M \to \operatorname{Tor}_0^R(M, N) \to 0$$
$$0 \to \operatorname{Tor}_1^R(M, N) \to M \to K \to 0.$$

Since (x_1, \ldots, x_n, y) is an ideal of grade n, one has dim $\operatorname{Tor}_0^R(M, N) = \dim R - n$; since the Cohen-Macaulay defect d of $\operatorname{Tor}_0^R(M, N)$ is at least 3, we obtain

$$\operatorname{depth}_{R} \operatorname{Tor}_{0}^{R} (M, N) = \operatorname{dim} \operatorname{Tor}_{0}^{R} (M, N) - d$$
$$= \operatorname{dim} R - n - d$$
$$\leq \operatorname{dim} R - n - 3.$$

Now depth_R $M = \dim R - n$, so a routine 'depth chase' on the exact sequences above establishes that depth_R $K = \operatorname{depth}_R \operatorname{Tor}_0^R(M, N) + 1$ and depth_R $\operatorname{Tor}_1^R(M, N) = \operatorname{depth}_R \operatorname{Tor}_0^R(M, N) + 2$.

Here is a concrete example which ensures that the class identified in the previous proposition is not empty. It was cooked up using the recipe outlined in Burch [5], also confer Kohn [10].

Example 12. Let k be a field of characteristic 0 and let R be the polynomial ring k[a, b, c, d, e] localized at the maximal ideal (a, b, c, d, e). The elements $x_1 = abc, x_2 = de(bd + ce)$ and y = ade + bc(bd + ce) are such that

(a) x_1, x_2 is a regular sequence;

(b) $pd_R(R/(x_1, x_2, y)) = 5$, as is verified by MACAULAY.

Therefore, dim $R/(x_1, x_2, y) = 3$ and depth $R/(x_1, x_2, y) = 0$, so that the Cohen-Macaulay defect of $R/(x_1, x_2, y)$ is 3.

Acknowledgements. This collaboration owes its existence to Luchezar Avramov and Craig Huneke, who made each of us aware of the other's work. It is a pleasure to thank them for the same and for their encouragement. Our thanks also to David Jorgensen for his valuable remarks on an earlier version of this paper.

References

- [1] Auslander, M., Modules over unramified regular local rings, Ill. J. Math. 5 (1961), 631-647.
- [2] Auslander, M., Bridger, M., Stable module theory, Memoirs of the American Mathematical Society 94 (American Mathematical Society, Providence, R.I., 1969).
- [3] Araya, T., Yoshino, Y., Remarks on a depth formula, a grade inequality and a conjecture of Auslander, Comm. Algebra 26 (1998), 3793-3806.
- [4] Avramov, L. L., Gasharov, V. N., Peeva, I. V., Complete intersection dimension Publ. Math. I.H.E.S. 86 (1997), 67–114.
- Burch, L., A note on the homology of ideals generated by three elements in local rings, Math. Proc. Camb. Phil. Soc. 64 (1968), 949–952.
- [6] Foxby, H.-B., Hyperhomological algebra in commutative algebra, in preparation.
- [7] Huneke, C., Wiegand, R., Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (1994), 449–476.
- [8] Iyengar, S., Depth for Complexes, and intersection theorems, Math. Z., 230 (1999), 545–567.
- [9] Jorgensen, D., A generalization of the Auslander-Buchsbaum formula, J. Pure Appl. Algebra, 144 (2) (1999), 145–155.
- [10] Kohn, P., Ideals generated by three elements, Proc. Amer. Math. Soc. 35 (1972), 55-58.
- [11] Matsumura, H., Commutative ring theory, (first paperback ed.) Cambridge Studies Adv. Math. 8 Univ. Press, Cambridge, 1989.
- [12] Murthy, M. P., Modules over regular local rings, Ill. J. Math. 7 (1963), 558-565.