
Journal of algebra 190 (1997) 195–213

FREE RESOLUTIONS AND CHANGE OF RINGS

Srikanth Iyengar

Abstract. Projective resolutions of modules over a ring R are constructed starting from
appropriate projective resolutions over a ring Q mapping to R. It is shown that such reso-

lutions may be chosen to be minimal in codimension ≤ 2, but not in codimension 3. This

is used to obtain minimal resolutions for essentially all modules over local (or graded) rings
R with codimension ≤ 2. Explicit resolutions are given for cyclic modules over multigraded

rings, and necessary and sufficient conditions are obtained for their minimality.

Introduction

We construct a projective resolution F(X, Y ) of a module M over a ring R, starting
from appropriate projective resolutions, X of R and Y of M , over a ring Q mapping to R.

The interest in such a procedure comes from the fact that homological properties of
modules over Q are often better understood. A typical case is when R is a quotient of a
polynomial ring Q: resolutions over Q are then finite, but those over R are usually infinite.
Thus, one can build, in a finite number of steps, suitable Q-resolutions of R and M , and
then use our construction to get a resolution over R.

When Q is a field, the classical bar construction of R and M over Q yields an projective
resolution of M over R. In Section 1 we generalize this by using differential graded (hence-
forth abbreviated to DG) bar constructions to obtain a resolution F(X, Y ) of M over R.
As an application, we give a short construction of a spectral sequence of Avramov.

Our construction can be used to obtain a free R-resolution of M only if both Q-
resolutions admit appropriate DG structures, so we consider the following question: If X is
a Q-free resolution of R with a structure of a DG algebra, then does a given Q-free resolu-
tion Y of M admit a structure of a DG module over X? Work of Avramov, Buschsbaum,
Eisenbud, Kustin, Miller, Srinivasan, and others, provides answers in many situations.
When X is a Koszul complex, the answer is positive for M = Q/I with pdQ(Q/I) ≤ 3,
or pdQ(Q/I) = 4 and Q/I Gorenstein, and may be negative when pdQ(Q/I) = 4, or
pdQ(Q/I) = 5 with Q/I Gorenstein.

In view of these ‘positive’ and ‘negative’ results, the only unresolved case is that of a
module M having a resolution of length at most 3. In Section 2, we prove that if Y has
length ≤ 2, then Y has a DG module structure over any DG algebra X resolving R. On the
other hand, using Avramov’s obstructions, we show that this result cannot be extended to
resolutions of length 3, even when X is a Koszul complex on a single non-zero divisor.
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When dealing with local (or graded) rings, the objective is to build minimal resolutions.
In general, F(X, Y ) is non-minimal over R, even if both resolutions X and Y are minimal
over Q. Nevertheless, in codimension ≤ 2 the construction can be used to write down
the minimal resolution of an a priori specified syzygy module of each module M over R.
When pdQ R = 1, we recover the periodic of period 2 resolutions constructed by Shamash
and Eisenbud. Moreover, when edim R− depth R ≤ 2 and R is presented as a quotient of
a regular local ring, the entire minimal free resolution of an R-module M can be obtained
in a finite number of steps. This is the content of Section 3.

For multigraded quotients of polynomial rings there is an explicit, though rarely min-
imal, DG algebra resolution: the Taylor resolution. In Section 4, we use it to construct
resolutions of cyclic modules over multigraded rings. Thus, we recover a result of Char-
alambous, who constructed by a different procedure, a free resolution of the residue field
over a multigraded ring. This result provided the starting point for our investigations.

1. Resolutions

(1.1) Differential Graded algebras. Let Q be a commutative ring. For a complex of
Q-modules W , we write W \ for the underlying graded Q-module, and |w| for the degree of

a homogeneous element in W . We denote a quasi-isomorphism from W to Y by W
'
−→Y .

A DG algebra over Q is a non-negative complex X = (X, ∂) with X\ a graded Q-
algebra such that the Leibniz formula ∂(x1x2) = (∂x1)x2 + (−1)|x1|x1(∂x2) holds for all
x1, x2 ∈ X . A homomorphism ϕ : (X, ∂) → (X ′, ∂′), of DG algebras is a homomorphism
of the underlying graded algebras with ∂′ϕ = ϕ∂. For a DG algebra X , we denote the
complex of Q modules Coker(Q −→ X) by X.

A DG module Y over a DG algebra X is a complex (Y, ∂) with Y \ a X\-module and
such that ∂(xy) = (∂x)y + (−1)|x|x(∂y) for all x ∈ X and y ∈ Y .

The relevance of DG structures as above in the construction of resolutions comes from
the following result, cf. [4, Proposition 1.2.5], [6].

For a Q-algebra R and an R-module M , there are Q-projective resolutions X and Y , of R
and M respectively, such that X has a structure of a DG Q-algebra and Y has a structure
of a DG module over X. Furthermore, X and Y may be chosen to satisfy the following
conditions:

(1) X0 is a projective Q-module.
(2) Xi = 0 and Yi = 0 for i > max{pdQ R, pdQ M}.
(3) If R (respectively M) admits a resolution by finitely generated projectives, then for

each i, the Q-module Xi (respectively Yi) is finitely generated. �

The following theorem was suggested by Avramov.

(1.2) Theorem. Let R be a Q-algebra, and M an R-module.
Let X be a Q-projective DG algebra resolution of R with X0 a projective Q-module. Let

Y be an a Q-projective resolution of M such that Y is a DG module over X.
There is a projective resolution (F(X, Y ), ∂) of M as an R-module with

Fn(X, Y ) =
⊕

p+i1+···+ip+j=n

R ⊗X i1 ⊗ · · · ⊗Xip
⊗ Yj ,
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and ∂ = ∂′ + ∂′′, where

∂′(x1 ⊗ · · · ⊗ xp ⊗ y) = −

p∑

i=1

(−1)ei−1x1 ⊗ · · · ⊗ ∂X(xi)⊗ · · · ⊗ xp ⊗ y

+ (−1)epx1 ⊗ · · · ⊗ xp ⊗ ∂Y (y)

∂′′(x1 ⊗ · · · ⊗ xp ⊗ y) =

p−1∑

i=1

(−1)eix1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xp ⊗ y

− (−1)ep−1x1 ⊗ · · · ⊗ xp−1 ⊗ xpy

with ei = i + |x1|+ · · ·+ |xi|.

The proof is given in (1.5). It uses bar constructions, which we recall following Mac
Lane, [20, Chapter X, §10].

(1.3) Bar Constructions. Let X be a DG algebra, and let W and Y be DG X-modules.

A complex of Q-modules βQ(W, X, Y ) is defined as follows.

The underlying graded Q-module has

βQ
n (W, X, Y ) =

⊕

p+k+i1+···+ip+j=n

Wk ⊗Xi1 ⊗ · · · ⊗X ip
⊗ Yj.

It is generated by elements w ⊗ x1 ⊗ · · · ⊗ xp ⊗ y = w[x1| . . . |xp]y. The differential on

βQ(W, X, Y ) is given by ∂ = ∂′ + ∂′′, where

∂′(w[x1| . . . |xp]y) = ∂W (w)[x1| . . . |xp]y

−

p∑

i=1

(−1)ei−1w[x1| . . . |∂X(xi)| . . . |xp]y

+ (−1)epw[x1| . . . |xp]∂Y (y)

with ei = i + |w|+
i∑

j=1

|xj|

∂′′(w[x1| . . . |xp]y) = (−1)e0(wx1)[x2| . . . |xp]y

+

p−1∑

i=1

(−1)eiw[x1| . . . |xixi+1| . . . |xp]y

− (−1)ep−1w[x1| . . . |xp−1](xpy)

The complex of Q-modules βQ(X, X, Y ) is a DG module over X , with operation on the
left hand factor. It is called the bar construction of Y over the DG Q-algebra X .
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(1.4) Theorem. Let X = (X, ∂) be a Q-projective DG algebra resolving R, and such that
X0 is a projective Q-module. Let Y = (Y, ∂) be an Q-projective resolution of M such that
Y is a DG X-module.

The complex βQ(R, X, Y ) is a projective resolution of M as an R module. If X and Y

are Q-free, then βQ(R, X, Y ) is an R-free resolution of M .

Proof. Define ε : βQ(X, X, Y ) −→ Y by ε(x[ ]y) = x · y and ε(x[x1| . . . |xp]y) = 0 for p > 0,
and note that ε is a morphism of complexes.

Let π : Y −→ M be the augmentation map, and let θ : βQ(X, X, Y ) −→ βQ(R, X, Y ) be
the map induced by the augmentation X −→ R. Set µ = πε. In the commutative diagram

βQ(R, X, Y )
θ

←−−−− βQ(X, X, Y )
ε

−−−−→ Y

R⊗Xµ

y µ

y π

y

M M M

π is a quasi-isomorphism. Thus, to prove that R⊗X µ is a quasi-isomorphism, it is enough
to show that ε and θ are quasi-isomorphisms.

The Q-linear homomorphisms

ι : Y → βQ(X, X, Y ) σ : βQ(X, X, Y )→ βQ(X, X, Y )

ι(y) = 1[ ]y σ(x[x1| . . . |xp]y) = 1[x|x1| . . . |xp]y for p ≥ 0

satisfy ει = 1Y and ∂σ + σ∂ = 1B − ιε. It follows that H(ε) is an isomorphism.

Filter the complex C = βQ(X, X, Y ) by the number of bars; thus FpC is the submodule
generated by elements x[x1| . . . |xi]y with i ≤ p. Let {FpD}p≥0 be the corresponding filtra-

tion on D = βQ(R, X, Y ). In the spectral sequences associated to the filtered complexes

C and D, we have E0
p,∗(C) = X ⊗Q Lp and E0

p,∗(D) = R⊗Q Lp, where Lp =
(
X

⊗p
⊗Q Y

)
.

Note that θ : C −→ D is filtration preserving, and hence yields a homomorphism

Hq(X ⊗Q Lp) = E1
p,q(C) −→ E1

p,q(D) = Hq(R⊗Q Lp).

As X
\

and Y \ are Q-projective, Lp is a bounded below complex of projective modules.
Thus the quasi-isomorphism X −→ R induces a quasi-isomorphism X ⊗Q Lp −→ R ⊗Q Lp.

So E1
p,∗(C) ∼= E1

p,∗(D), and hence H(θ) : H(C) ∼= H(D) is an isomorphism.

To complete the proof, note that βQ(R, X, Y ) is a complex of projective (respectively,
free) R-modules, and hence a projective (respectively, free) resolution of M . �

(1.5) Proof of Theorem (1.2). The formulas in (1.3) for the differentials of the bar construc-

tion show that the complex of R-modules underlying βQ(R, X, Y ) is exactly the complex
in (1.2). �

As an application of (1.5) we obtain a spectral sequence and a sufficient condition for its
collapse, given in [2, (3.1) and (4.1)]. The sequence below starts on the first page, rather
than the second: this is useful in characterizing Golod modules, cf. (1.7)
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(1.6) Theorem. If Q→ R is a finite homomorphism of local rings, inducing the identity
on the common residue field k, and M is a finite R-module, then there exists a first quadrant
spectral sequence converging to TorR(M, k). The first page of the spectral sequence is the
standard reduced bar construction, with

E1
p,q =

(
Tor

Q
(R, k)⊗p ⊗k TorQ(M, k)

)
q

d1
p,∗([x1| . . . |xp]y) =

p−1∑

i=1

(−1)i[x1| . . . |xixi+1| . . . |xp]y + (−1)p[x1| . . . |xp−1](xpy)

where Tor
Q

(R, k) = Coker(k −→ TorQ(R, k)). The second page of the spectral sequence is

E2
p,q = TorTorQ(R,k)

p (k, TorQ(M, k))q.

If the minimal Q-free resolution of R has a structure of a DG algebra, and the minimal
Q-free resolution of M has a DG module structure over it, then the spectral sequence
collapses with E2 = E∞.

Proof. Choose a DG Q-algebra X and a DG X-module Y satisfying the hypothesis of (1.4).

The complex βQ(R, X, Y ) is then an R-projective resolution of M , and TorR(M, k) =
H(C), where

C = k ⊗R βQ(R, X, Y ) = βk
(
k, (X ⊗ k), (Y ⊗ k)

)
.

Consider the spectral sequence associated to the filtration of C defined by the number of
bars. Noting that H(X ⊗ k) = TorQ(R, k) and H(Y ⊗ k) = TorQ(M, k), the Künneth
formula gives the E1 page. As k is a field, the expression for E2

p,q = [Hp(E
1)]q results from

[20, Chapter X, (8.2)].
To complete the proof: if X and Y are minimal, then X ⊗ k and Y ⊗ k have zero

differential, and hence E2 = E∞. �

(1.7) Golod modules. Let π : Q −→ R be as in (1.6). For a finitely generated R-module
M , the Poincaré series of M is the formal power series PR

M (t) =
∑

i>0 βit
i, where the i’th

Betti number βi is the rank of the i’th free module in a minimal free resolution of M .
Let X be a DG algebra and Y a DG module over X satisfying the hypothesis of Theorem

(1.4). The convergence of the spectral sequence in (1.6) gives
∑

p+q=n

dimk E∞
p,q ≤

∑

p+q=n

dimk E1
p,q ≤

∑

p+q=n

dimk E0
p,q .

These numerical inequalities yield coefficientwise inequalities of formal power series

PR
M (t) 4

PQ
M (t)

1− t(PQ
R (t)− 1)

4

∑
i≥0(rankQ Yi)t

i

1− t(
∑

i≥0(rankQ Xi)ti − 1)
.

A module M for which equality holds on the left is called π-Golod by Levin [19]. This is
equivalent to the condition that the spectral sequence in (1.6) collapses on the first page.
If the R-module k is π-Golod, then π is said to be a Golod homomorphism.

Note that equality holds on the right if and only if X and Y are minimal over Q. We
are now in a position to prove the following
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(1.8) Proposition. Let X and Y be minimal Q-free resolutions of R and M respectively,
and set X+ = Ker(X −→ k). The following conditions are equivalent:

(i) M has a minimal resolution of the form F(X, Y ).
(ii) X has a DG algebra structure with X+ ·X+ ⊂ mX+, and Y has a structure of a

DG X-module with X+ · Y ⊂ mY .
(iii) X has a structure of a DG algebra; Y has a structure of a DG X-module, and M

is π-Golod.

Proof. The equivalence of (i) and (ii) follows from the expression for the differential on
F(X, Y ), given in (1.2).

Assume that X and Y have the appropriate DG structures. The resolution F(X, Y )
is minimal over R if and only if both inequalities of formal power series above become
equalities. By (1.7), as X and Y are minimal, this is equivalent to the condition that M
is π-Golod. Thus, (i) ⇐⇒ (iii). �

2. Existence of multiplicative structures

Let Q be a noetherian local ring and I an ideal in Q. When I is an generated by a
regular sequence, the Koszul complex resolving Q/I has a DG algebra structure. This
raises the question, first asked by Buchsbaum and Eisenbud [8], as to whether the minimal
resolution of Q/I admits a DG algebra structure in general. They give a positive answer
when pdQ Q/I ≤ 3. When pdQ Q/I = 4 and Q/I is Gorenstein, such an answer was
obtained by Kustin and Miller, in [17], [16].

A related question, also raised in [8], is the following: Let J be an ideal generated by
a regular sequence contained in I. Suppose that X is the Koszul complex resolving Q/J .
Does the minimal resolution Y of Q/I over Q have a structure of a DG X-module? This is
a weaker question: Indeed, if Y has a DG algebra structure, then by the universal property
of Koszul complexes, it has a structure of a DG X-module. Thus, in view of the discussion
above, Y has a DG module structure over X when pdQ Q/I ≤ 3 or pdQ Q/I = 4 and Q/I
is Gorenstein.

On the other hand Srinivasan [25] gives an example of an ideal I such that the minimal
resolution Y does not admit a structure of a DG algebra, but for every ideal J ⊆ I
generated by a Q-regular sequence, Y has a DG module structure over the Koszul complex
resolving Q/J .

In the light of these results, we begin with the following proposition, the proof of which
uses an idea from [8, (1.3)]:

(2.1) Proposition. Let π : Q −→ R be a surjective homorphism of rings, and let X be a
Q-free DG algebra resolution of R, with X0 = Q. If Y is a Q-free resolution of M such
that Yi = 0 for i > 2, then Y has a structure of a DG module over X.

Proof. Let θ : R⊗M −→M be the structure map given by θ(r⊗m) = rm. By the classical
comparison theorem for resolutions, there is a morphism of complexes µ : X⊗Y −→ Y such
that the following diagram, where the vertical maps are the canonical augumentations,
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commutes:
X ⊗ Y

µ
−−−−→ Y

y
y'

R ⊗M
θ

−−−−→ M

Furthermore, we can choose µ to extend the canonical isomorphism Y = X0 ⊗ Y
∼=
−→ Y .

Define the action of X on Y by x · y = µ(x⊗ y) for x ∈ X and y ∈ Y . The only thing
that needs to be proved is that the action is associative, that is, x1 · (x2 · y) = (x1x2) · y
for x1, x2 ∈ X and y ∈ Y . By construction X0 ⊗ Y −→ Y is the identity map on Y , and
hence, by degree considerations, we need only deal with x1, x2 ∈ X1 and y ∈ Y0.

In this case, x1 · (x2 · y) and (x1x2) · y are in Y2. As the differential of Y is injective on
Y2, it is enough to prove that ∂(x1 · (x2 · y)) = ∂((x1x2) · y). A direct computation shows
that

∂(x1 · (x2 · y)) = ∂(x1)µ(x2 ⊗ y)− ∂(x2)µ(x1 ⊗ y) = ∂((x1x2) · y),

thus proving associativity. �

In attempting to extend (2.1), one has to contend with the following result proved by
Avramov, cf. [2]

Let Q be an arbitrary local ring and m and n be integers subject to the conditions
depth Q ≥ n ≥ m ≥ 2. If n ≥ 4, then there exists a perfect ideal I in Q of grade n, and an
ideal J in I generated by Q-regular sequence of length m, for which the minimal resolution
of M = Q/I does not admit a DG module structure over the Koszul complex resolving
R = Q/J . If n ≥ 6, then the ideal I can be chosen to be Gorenstein.

In addition, a recent paper of Srinivasan [26] contains an example of a grade 5 Gorenstein

ideal I, and an ideal J generated by a regular sequence in I, such that the minimal

resolution of Q/I does not admit a structure of a DG module over the Koszul complex
resolving Q/J .

The following theorem shows that (2.1) cannot be extended to length 3 resolutions:

(2.2) Theorem. Let Q be an arbitrary local ring and let n be an integer such that
depth Q ≥ n ≥ 3. There exists a perfect Q-module L of grade n, and a non-zero divi-
sor f ∈ Q in the annihilator of L, for which the minimal resolution of L does not admit a
DG module structure over any DG algebra resolving R = Q/(f).

The proof of the theorem is given in (2.6). It uses some facts about obstructions to DG
structure on minimal resolutions, which we now recall.

(2.3) Obstructions. Let π : Q −→ R be a finite local homomorphism, inducing the iden-

tity map on their common residue field k, and let M be an R module. Denote by TorQ
+(R, k)

the kernel of the composition TorQ(R, k) −→ TorQ
0 (R, k) = R ⊗ k −→ k. In [2] Avramov

defines a graded k-module oπ(M), called the obstruction to the existence of multiplicative
structure, as the kernel of the canonical map of graded k-spaces

TorQ(M, k)

TorQ
+(R, k) · TorQ(M, k)

−→ TorR(M, k).
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Supposing that the minimal Q-free resolution X of R has a structure of a DG algebra, he
proves the following results:

If oπ(M) 6= 0, then the minimal Q-free resolution of M does not admit a structure of a
DG module over X , cf. [2, (1.2)].

When Q = k[x1, x2, x3, x4] and R = Q/(x2
1, x

2
4), Avramov shows that oπ(M) 6= 0

for M = Q/(x2
1, x1x2, x2x3, x3x4, x

2
4). Using this example, and the functorial properties

of oπ(−) established in [2], he constructs a grade 4 perfect module with a non-trivial
obstruction.

We construct a grade 3 example by a similar procedure.

(2.4) Construction. Over the polynomial ring Q′ = k[a, b, c] the complex

G : 0 −→ Q′

0
BB@

−b
a
−c

1
CCA

−−−−−→ Q′3

0
BBBBBBB@

0 c2 ac
0 0 0
c2 0 −bc
0 −c −a
−a −b 0

1
CCCCCCCA

−−−−−−−−−−−−−−→ Q′5

0
BB@

b 0 a 0 c2

0 c 0 0 0
c a 0 c2 0

1
CCA

−−−−−−−−−−−−−−−−→ Q′3

is exact and minimal. Consider the multigraded module N ′ = Coker(Q′5 −→ Q′3), which
is generated by elements e1, e2, e3 with multidegrees

||e1|| = (0,−1, 1) ||e2|| = (1, 0,−1) ||e3|| = (0, 0, 0).

Note that the element ce1 is non-zero and generates the socle of N ′. The element c2

annihilates N ′ and so N ′ is a multigraded R′ = Q′/(c2)-module. Let K be the Koszul

complex on {a, b, c} with generators A, B, C. For a Q′-module P we identify TorQ′

(P, k)
with H(P ⊗K), and denote homology classes by cls(−).

The k-vector space TorQ′

1 (R′, k) is generated by w = cls(cC).

On the other hand, TorQ′

2 (N ′, k) is generated by

z1 = cls(ce1 ⊗ (A ∧ C)) z2 = cls(ce1 ⊗ (B ∧ C)) z3 = cls(ce3 ⊗ (A ∧ C))

Indeed, a direct computation shows that these elements are cycles. On the other hand, the
boundaries in (N ′ ⊗K)2 are elements of the form m⊗ (aB ∧C − bA ∧C + cA ∧B), with
m ∈ N ′. Comparing multidegrees, one easily sees that z1, z2, z3 are linearly independent.

Furthermore TorQ′

2 (N ′, k) = G3 ⊗ k ∼= k3; hence {z1, z2, z3} is a basis for TorQ′

2 (N ′, k).

The action of TorQ′

(R′, k) on TorQ′

(N ′, k) can be computed from the natural DG
module structure of (N ′ ⊗ K) over the DG algebra (R′ ⊗ K). Using the bases above,
we immediately get that

TorQ′

1 (R′, k) · TorQ′

2 (N ′, k) = (wz1, wz2, wz3) = (0) .

Thus, to prove that oπ(N ′) 6= 0, where π : Q′ −→ R′ is the canonical surjection, it is enough

to exhibit a non-zero element in Ker(TorQ′

3 (N ′, k) −→ TorR′

3 (N ′, k)).
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Consider the cycle u = ce1 ⊗ (A ∧ B ∧ C) ∈ N ′ ⊗ K. Let K ′ = R′ ⊗ K be the
Koszul complex over R′, and let R′〈S〉 denote the divided powers algebra, with |S| = 2.
Recall that R′〈S〉 is a free module on basis elements {S(i)}i≥0, with |S(i)| = 2i, and

has a multiplication given by S(i) · S(j) = S(i+j). As R′ is a hypersurface, the complex
F = K ′ ⊗R′〈S〉 with differential defined by

∂(x⊗ S(n)) = ∂(e)⊗ S(n) + (−1)|x|(x ∧ cC)⊗ S(n−1)

is an R′-free resolution of k, cf.[27, Theorem 4]. The map TorQ′

(N ′, k) −→ TorR′

(N ′, k)
is induced by the natural inclusion N ′ ⊗Q′ K = N ′ ⊗R′ K ′ −→ N ′ ⊗R′ F . A routine
computation shows that

u = ∂
(
e1 ⊗ (A ∧B)⊗ S + e2 ⊗ S(2) + e3 ⊗ (A ∧ C)⊗ S

)
.

Hence u is a boundary in N ′ ⊗R′ F , and cls(u) ∈ Ker(TorQ′

3 (N ′, k) −→ TorR′

3 (N ′, k)).
Note that the maximal degree of a generator in the minimal resolution of N ′ is 4. Thus,

by [2, (1.5g)], we get that oπ(M ′) 6= 0, where M ′ = N ′/m
5N ′.

The Q′-module M ′ has finite length, and it is perfect with pdQ′ M = 3. For complete-
ness, we note that the computer program MACAULAY gives for M ′ the following Betti
numbers: 3, 18, 27, 12.

Following a method of Avramov [2, (2.5)], we use (2.4) above to prove

(2.5) Proposition. Let (Q, m, k) be a local ring and x, y, z be a Q-regular sequence. The
Q-module M presented by the 3× 18 matrix




y 0 x z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 z 0 0 0 x5 0 0 x4y x3y2 x2y3 xy4 y5 x4z x3yz x2y2z xy3z y4z
z x 0 0 z2 0 y5 y4z 0 0 0 0 0 0 0 0 0 0




is perfect with pdQ M = 3. Furthermore, z2M = 0 and oπ(M) 6= 0, where π : Q −→ R =

Q/(z2) is the natural surjection.

Proof. Denote by Q̃ the localization of the polynomial ring Q[a, b, c] at the maximal ideal
m + (a, b, c), and by Q′ the localization of k[a, b, c] at (a, b, c). Consider the commutative
diagram:

Q
φ

←−−−− Q̃
θ

−−−−→ Q′

y
y

y

R ←−−−− Q̃/(c2) −−−−→ Q′/(c2)

where the squares are tensor product diagrams, θ is factorization by mQ and φ is the

unique map of Q-algebras with φ(a) = x, φ(b) = y, and φ(c) = z. Let M̃ be the module

over Q̃ presented by 3×18 matrix above, with x, y, z substituted by a, b, c. Set M = M̃⊗Q

and M ′ = M̃ ⊗Q′, and note that {Q′, Q′/(c2), M ′} is the triple constructed in (2.4).
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As the entries in the presentation for M̃ are monomials in the variables, and x, y, z is a
Q-regular sequence, it is easily seen that, for i > 0,

Tor
eQ
i (M̃, Q) = 0 and Tor

eQ
i (Q̃/(c2), Q) = 0(2.5.1)

Tor
eQ
i (M̃, Q′) = 0 and Tor

eQ
i (Q̃/(c2), Q′) = 0.

For the map π : Q′ −→ Q′/(c2), we have oπ(M ′) 6= 0 by (2.4). Applying the flat base change
property of the obstruction, cf. [2, (1.4)], first to the homomorphism θ and then to the
homomorphism φ, we deduce that oπ(M) 6= 0.

It remains to be seen that M is perfect of grade 3. From (2.5.1) we get pdQ M =

pd eQ M̃ = pdQ′ M ′ = 3. From the presentation for M̃ , it is clear that (a5, b5, c5) annihilates

M̃ , and hence that (x5, y5, z5) annihilates M . As x5, y5, z5 is a Q-regular sequence, we see
that grade M ≥ 3 = pdQ M . Thus, M is perfect. �

(2.6) Proof of Theorem (2.2). Suppose that x, y, z is a Q-regular sequence. Let M and
π be as in (2.5) and set f = z2. As depth Q ≥ n ≥ 3 and depthM = depthQ − 3, there
exists a Q-regular sequence a1, . . . , an−3 which is also M -regular.

Set L = M ⊗Q/(a1, . . . , an−3). Note that L is perfect and also that:

TorQ(L, k) = TorQ(M, k)⊗k Λ

TorR(L, k) = TorR(M, k)⊗k Λ

where Λ = TorQ(R/(a1, . . . , an−3), k) is the exterior algebra on the vector space Λ1. By
naturality we have oπ(L) = oπ(M)⊗k Λ, and hence (2.5) shows that oπ(L) 6= 0.

As recalled in (2.3) above, the non-triviality of the obstruction implies that the minimal
Q-resolution Y of L has no DG module structure over the Koszul complex K resolving R.

If X is a DG algebra resolving R, then, by the universal property of Koszul complexes,
there is a homomorphism of DG algebras K −→ X . Thus, if Y is a DG module over X ,
then Y has a structure of a DG module over K, which is a contradiction. �

3. Minimal resolutions

In this section (Q, m, k) is a commutative noetherian local ring, π : Q � R is a surjective
homomorphism, and M is a finite R-module. We use (1.2) to construct the minimal R-free
resolution of a d’th syzygy of M , where d is known a priori.

(3.1) The module M has a minimal R-free resolution

. . . −→ Gd
∂d−→ Gd−1

∂d−1

−−−→ . . .
∂1−→ G0

which is unique up to an isomorphism. Thus Md, the image of ∂d is well defined and is
called the d’th syzygy module of M over R.

For d > max{depth R−depth M, 0}+1 the R-module Md has no free direct summands,
cf. [3, (4.7)]. Furthermore, depthMd = depth R, by [22, Proposition 10], and hence
pdQ Md = pdQ R if pdQ R and pdQ M are finite.
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(3.2) Theorem. Assume that pdQ R = 1 and that pdQ M is finite.
For d ≥ depth R−depth M +2, the dth syzygy module Md, of M over R, has a minimal

free resolution Y with a DG module structure over the Koszul complex X resolving R.
The free resolution of F(X, Y ) of Md given by Theorem (1.2) is minimal.

Remark. The resolution described above is the periodic of period 2 minimal resolution
constructed by Shamash [24] and Eisenbud [10].

Proof. The Koszul complex X : 0 −→ Qe −→ Q −→ 0, where ∂(e) = x is a non-zero divisor,
is a free resolution of R. It has a DG algebra structure with e · e = 0.

If x 6∈ m
2, then by a theorem of Nagata [21, (27.4)] we have pdR M = pdQ M −1; hence

pdR M = depthR − depthM and Md = 0.
Assume x ∈ m

2. By (3.1), we have pdQ Md = pdQ R and so Md has a minimal free
resolution

Y : 0 −→ Y1
ξ
−→ Y0 −→ 0 with Y0

∼= Qn and Y1
∼= Qn.

As Md is an R-module, multiplication by x on Y is homotopic to zero. Choose one such
homotopy σ, and note that for degree reasons σ2 = 0. Setting e ·y = σ(y), for y ∈ Y , gives
Y the structure of a DG X-module. With e(n) = e⊗ · · · ⊗ e (n copies), the free resolution
F = F(X, Y ) given by Theorem (1.2) is:

· · · −→ Re(n) ⊗ Y1 −→ Re(n) ⊗ Y0 −→ Re(n−1) ⊗ Y1 −→ · · ·

with maps e(n) ⊗ y0 7→ e(n−1) ⊗ σ(y0) and e(n) ⊗ y1 7→ e(n−1) ⊗ ξ(y1) for yi ∈ Yi. Setting
Y i = Re(n) ⊗ Yi, the R-free resolution of Md takes the form

· · · −→ Y 1
ξ
−→ Y 0

σ
−→ Y1 −→ · · · −→ Y 1

ξ
−→ Y 0

where ξ = R ⊗ ξ, and σ = R ⊗ σ.
As Y is minimal ξ(Y 1) ⊂ mY 0. To show that the periodic resolution is minimal, we

need to check that σ(Y 0) ⊂ mY 1. This follows from the fact that Md has no free direct
summands by an arugument of Eisenbud [10,(6.1)], which we reproduce for completion.
As F is exact, σ(Y 0) ∼= Coker(ξ) ∼= Md. If σ(Y 0) were not contained in mY 1, then σ(Y 0)
would contain a basis element of Y 1, so σ(Y 0) would have a R-free direct summand. Since
Md has not free direct summands, this concludes the proof. �

(3.3) If pdQ R = 2, then by the Hilbert-Birch theorem R has a minimal free resolution

X : 0 −→

n⊕

j=1

Qfj
φ
−→

n+1⊕

i=1

Qei
θ
−→ Q

π
−→ R −→ 0

with θ(ei) = (−1)iaφi, where a is a non-zero divisor and for I, J ⊂ N, the element φJ
I is

the minor obtained by deleting the rows indexed by I and columns indexed by J .
Herzog [14] has shown that the formulas

ei · ej =





0 if i = j;

−a
∑n

k=1(−1)i+j+kφk
i,jfk if i < j;

−ej · ei if i > j.

define on X a structure of a commutative DG algebra.
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(3.4) Theorem. Assume that pdQ R = 2 and that pdQ M if finite.
Let X be the free resolution of R with the DG algebra structure as above. For d ≥

depth R− depthM + 2, the d’th syzygy module Md, of M over R, has a free resolution Y
with a DG module structure over X.

The free resolution F(X, Y ) of Md given by Theorem (1.2) is minimal if and only if the
kernel of π : Q −→ R is a not generated by a regular sequence.

Remark. For the case not covered by the theorem, that is when ker(π) is generated by a
regular sequence, Avramov and Buchweitz [5] build tail ends of minimal resolutions using
different techniques.

Proof. By the assumption on d and (3.1), we have depth Md = depthR. Thus the minimal
free resolution of Md is

Y : 0 −→ Y2
ζ
−→ Y1

ξ
−→ Y0 −→ 0,

and has a structure of a DG module over X by (2.1).
If ker(π) is generated by a regular sequence, then X is a Koszul complex and hence

X+ · X+ 6⊂ mX+. Thus, condition (ii) of (1.9) fails to hold and F(X, Y ) cannot be
minimal.

If ker(π) is not generated by a regular sequence, then π is a Golod homorphism. cf. [1,
(7.1)]. As the minimal resolutions X and Y have the appropriate DG structures, if Md is
π-Golod, then F(X, Y ) is minimal by (1.9).

To prove that Md is π-Golod, it is enough, by [19, (1.1)], to show that TorQ
i (Md, k) −→

TorR
i (Md, k) is injective for i ≥ 1. Lescot [18, Lemma, p. 43] proves that if π is a

Golod homomorphism and TorQ
i (M, k) −→ TorR

i (M, k) is injective for all i ≥ p, then

TorQ
i (Mp−1, k) −→ TorR

i (Mp−1, k) is injective for all i ≥ 1. As pdQ M is finite, this applies
to p = pdQ M + 1 = d + 1. �

(3.5) Example. Let Q = k[x, y], for a field k. Set R = Q/(x2y, xy2) and M = R/(x2, y2).
We have depth M = depth R = 0. Thus d = 2, and the second syzygy module is the direct
sum of M ′

2 = k[x, y]/(x2, xy) and M ′′
2 = k[x, y]/(y2, xy). The Q-free resolution of M ′

2 is

Y : 0 −→ Qc

 
−y
x

!

−−−−−→ Qb1 ⊕Qb2

(x2 xy )
−−−−−−−→ Qa −→ 0

By (3.3), the multiplication on X is defined by e1 · e2 = −xyf = −e2 · e1. Following
through the proof of (2.1) one sees that the action of X on Y is given by:

e1 · a = yb1 e1 · b2 = xyc e2 · a = yb2 e2 · b1 = −xyc f · a = yc

Now, Theorem (1.2) gives the beginning of the resolution of k[x, y]/(x2, xy) over R:

· · · −−→ R5

0
BB@

−y 0 xy −xy 0
y x2 xy 0 0
−x 0 0 x2 xy

1
CCA

−−−−−−−−−−−−−−−−−−−−−−→ R3

 
−y y 0
x 0 y

!

−−−−−−−−−−→ R2 (x2 xy )
−−−−−−−→ R .

The resolution of k[x, y]/(y2, xy) is obtained by interchanging x and y. The Poincaré series
of M is (1 + t− t2)(1− t− t2)−1.
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4. Monomial quotients of monomial rings.

Let k be a field and Q = k[x1, . . . , xn] the polynomial ring with the natural n-grading,
and unique homogeneous maximal ideal m = (x1, . . . , xn). If a is an ideal generated by
monomials (a1, . . . , as), then the quotient ring R = Q/a is n-graded with the multigrading
induced from Q.

(4.1) Taylor resolutions. Define X to be the graded Q-module Λ ⊕s
i=1 Qfi, with Xp

free of rank
(

s
p

)
. For I = {i1, . . . , ip} set fI = fi1 ∧ · · ·∧ fip

and aI to be the least common

multiple of the monomials indexed by I. The Taylor resolution, cf. [28], of R over Q is the
graded module X with differential

∂(fI) =

p∑

k=1

(−1)k aI

a{I\ik}
f{I\ik}.

As proved by Gemeda [13], cf. also [12], the formula

fI1 · fI2 = gcd(aI1 , aI2)fI1 ∧ fI2 .

defines a structure of a DG algebra on the Taylor resolution.

(4.2) Multi-homogeneous quotients. Let b be an ideal generated by monomials
b1, . . . , bt, and such that a ⊆ b. Let Y be the Taylor resolution of Q/b and hJ =
hj1 ∧ · · · ∧ hjq

, where J = {j1, . . . , jq}.

For each i there is an integer ν(i) such that bν(i) divides ai. For I = {i1, . . . , ip}, set
ν(I) = {ν(i1), . . . , ν(ip)} and hν(I) = hν(i1) ∧ · · · ∧ hν(ip) in Y .

The consideration of such “monomials” is suggested by the formulas for the differential
in the resolution of the residue field given in [9]. A direct computation shows that

Lemma. The canonical surjection R = Q/a � Q/b extends to a homomorphism, φ :
X → Y , of DG Q-algebras defined by

φ(fJ ) =
aJ

bν(J)
hν(J)

In particular, Y is a DG X-module. �

As an application of (1.2) and (4.2), we get an explicit free resolution of the R-module
M = Q/b.

(4.3) Theorem. With X and Y as above, set X = X/Q. There is a projective resolution
of M over R, which in degree n is the R-module

⊕

p+i1+···+ip+j=n

R ⊗X i1 ⊗ · · · ⊗Xip
⊗ Yj
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and differential ∂ = ∂′ + ∂′′, where

∂′(fI1 ⊗ · · · ⊗ fIp
⊗ hJ ) = −

p∑

i=1

(−1)ei−1fI1 ⊗ · · · ⊗ ∂X(fIi
)⊗ · · · ⊗ fIp

⊗ hJ

+ (−1)epfI1 ⊗ · · · ⊗ fIp
⊗ ∂Y (hJ )

∂′′(fI1 ⊗ · · · ⊗ fIp
⊗ hJ ) =

p−1∑

i=1

(−1)ei gcd(aI1 , aI2)
(
fI1 ⊗ · · · ⊗ fIi

∧ fIi+1
⊗ · · · ⊗ fIp

⊗ hJ

)

+ (−1)ep
aIp

bJ

b{ν(Ip)∪J}

(
fI1 ⊗ · · · ⊗ fIp−1

⊗ hν(Ip) ∧ hJ

)

with ei = i + card(I1) + · · ·+ card(Ii). �

We have the following combinatorial criterion for the minimality of the resolution:

(4.4) Proposition. The resolution of Theorem (4.3) is minimal if and only if the following
conditions hold:

aI 6= a{I\i} for 1 ≤ i ≤ s, where I = {1, . . . , s}.(1)

bJ 6= b{J\j} for 1 ≤ j ≤ t, where J = {1, . . . , t}.(2)

gcd(ai, aj) 6= 1 for 1 ≤ i, j ≤ s.(3)

aI 6= bν(I) for all I ⊆ {1, . . . , s}.(4)

Proof. Let I1 and I2 be subsets of {1, . . . , s}, and J a subset of {1, . . . , t}. Evidently, the
resolution is minimal if and only if X and Y satisfy the following conditions:

(1’) X is a minimal resolution.
(2’) Y is a minimal resolution.
(3’) gcd(aI1 , aI2) 6= 1.
(4’) aIp

bJ 6= b{ν(Ip)∪J}.

A result of Fröberg [12, (5.1)] shows that conditions (1) and (1’), respectively, (2) and
(2’), are equivalent.

Assuming that (1) holds, a direct computation shows that (3) and (3′), respectively, (4)
and (4’), are equivalent. �

As a corollary of (4.3) and (4.4), we recover the main result of [9].

Corollary. Let Q = k[x1, . . . , xn] be a polynomial ring over a field k, and let a be an ideal
minimally generated by monomials a1, . . . , as. With X the Taylor resolution of R = Q/a,
and Y the Koszul complex on {x1, . . . , xn}, Theorem (4.3) yields a free resolution of the
residue field over R.

Furthermore, if aI 6= aI\i and gcd(ai, aj) 6= 1 for i, j ∈ I = {1, . . . , s}, then the resolu-
tion is minimal.

Proof. When M = k, the Taylor resolution is the Koszul complex on the variables
{x1, . . . , xn}. Thus, with X and Y as above, (4.3) is an R-free resolution of the residue
field k.
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Under the assumptions of the corollary, conditions (1) and (3) of Proposition (4.4) are
satisfied. As a ⊂ (x1, . . . , xn)2, conditions (2) and (4) are easily seen to hold. Thus, the
resolution is minimal. �

Remark. Recently, Backelin [7] and Eisenbud, Reeves and Totaro [11] have given iterative
procedures for constructing a resolution of a multi-graded module over a monomial ring.
Their purpose is to give upper bounds on the degrees of the generators in the minimal
resolution, in terms of the degrees of the generators of the first syzygy module. Our aim
in this paper has been to give explicit resolutions, and the price we pay is that the upper
bounds we get from Theorem (4.3) are weaker.

Remark. Suppose that I, J are 0-Borel fixed ideals in a polynomial ring Q, and such that
I ⊆ (x1, . . . , xn)J . One can use a recent result of Peeva [23], and Theorem (1.2) to
construct the minimal resolution of the Q/I-module Q/J . This is a special case of a result
in [15].
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