The Bousfield lattice of the stable module category of a finite group Srikanth B. Iyengar

Let G be a finite group, k a field whose characteristic divides the order of G, and $\mathsf{StMod}\,kG$ the stable module category of all (and not only the finite dimensional) kG-modules, with its natural structure of a triangulated category. Benson, Krause, and I [3, 4, 6] have been investigating global structural properties of $\mathsf{StMod}\,kG$; to be precise, the classification of its localizing subcategories and its colocalizing subcategories. The aim of my talk was to cast our results in a different light, by using them to discover the structure of certain lattices naturally associated to the stable module category. For a more systematic treatment, in the context of tensor triangulated categories, see [10]. This line of development is inspired by Bousfield's work [7] in stable homotopy theory; see also [9].

For any kG-modules M, N, the k-vectorspace $M \otimes_k N$ has a diagonal kG-action:

$$g(m \otimes n) = gm \otimes gn$$
 for $g \in G$ and $m \otimes n$ in $M \otimes_k N$.

This induces a tensor product on StMod(kG) as well.

Definition 1. The Bousfield class of a kG-module M is the full subcategory

$$A(M) = \{ X \in \mathsf{StMod}(kG) \mid M \otimes_k X = 0 \text{ in } \mathsf{StMod}(kG) \}$$

Recall that $M \otimes_k X$ is zero in $\mathsf{StMod}(kG)$ precisely when it is projective. Modules in A(M) are said to be M-acyclic, whence the notation. Modules M and N are Bousfield equivalent if A(M) = A(N).

A basic problem is to classify kG-modules, up to Bousfield equivalence. To this end we mimic [7], and endow the collection of all Bousfield classes, $A(\mathsf{StMod}\,kG)$, with the following partial order:

$$A(M) \le A(N)$$
 if $A(M) \supseteq A(N)$.

A priori, it is not even clear that $A(\mathsf{StMod}\,kG)$ is a set. That it is so, and much more, is contained in the following:

Theorem 2. The collection $A(\mathsf{StMod}\,kG)$ with partial order \leq is a lattice, with supremum and infimum given by

$$A(M) \vee A(N) = A(M \oplus N)$$
 and $A(M) \wedge A(N) = A(M \otimes_k N)$.

Moreover, the lattice A(StMod kG) is distributive and complete.

Assume for the moment that $A(\mathsf{StMod}\,kG)$ is a set. It is clear that it is partially ordered under \leq . Moreover, since $-\otimes_k X$ commutes with (arbitrary) direct sums, any set $\{M_i\}$ of kG-modules has a supremum:

$$\bigvee_{i} \mathcal{A}(M_i) = \mathcal{A}(\bigoplus_{i} M_i).$$

It then follows from general principles, see [8], that any subset of $A(\mathsf{StMod}\,kG)$ also has a infimum; that is to say, the lattice $\mathsf{StMod}\,kG$ is complete. The non-trivial part in Theorem 2 is the explicit identification of the infimum; given that, it is clear also that the lattice is distributive.

Localizing subcategories. The tensor product on $\mathsf{StMod}\,kG$ is compatible with its structure as a triangulated category. A subcategory S is tensor closed if whenever M is in S so is $M \otimes_k X$ for any kG-module X. A localizing subcategory is a triangulated subcategory that is closed under all set-indexed coproducts. We write $\mathsf{L}(M)$ for the smallest (with respect to inclusion) tensor closed localizing subcategory of $\mathsf{StMod}\,kG$ containing M, and $\mathsf{L}(\mathsf{StMod}\,kG)$ for the collection of all such subcategories, with the (natural !) partial order:

$$L(M) \le L(N)$$
 if $L(M) \subseteq L(N)$.

There is an analogue of Theorem 2 for this collection. There is a map of lattices from $L(\mathsf{StMod}\,kG)$ and $A(\mathsf{StMod}\,kG)$, the key point being the following:

Lemma 3. If
$$L(M) \leq L(N)$$
, then $A(M) \leq A(N)$.

Corollary 8 contains the converse to the preceding lemma. Its proof uses the theory of support, which we now recall.

Support. Let $H^*(G, k)$ be the cohomology algebra, $\operatorname{Ext}_{kG}^*(k, k)$, of G. This is a k-algebra which is graded-commutative, because kG is a Hopf algebra, and also finitely generated; the last statement is due to Evens and Venkov, and the starting point of the cohomology study of modular representations of finite groups; see, for instance, [1] for details. Set

$$\mathcal{V}_G$$
 = homogeneous prime ideals in $H^*(G,k)$, except $H^{\geqslant 1}(G,k)$.

For each $\mathfrak{p} \in \mathcal{V}_G$ Benson, Carlson, and Rickard [2] (see also [3]) construct certain idempotent exact functors on $\mathsf{StMod}\,kG$, which we denote $\Gamma_{\mathfrak{p}}$. A crucial property of these functors is that

$$\Gamma_{\mathfrak{p}}M \cong \Gamma_{\mathfrak{p}}k \otimes_k M$$
.

The support of a kG-module is the subset

$$\operatorname{supp}_G M = \{ \mathfrak{p} \in \mathcal{V}_G \mid \Gamma_{\mathfrak{p}} k \otimes_k M \neq 0 \}$$

For finite dimensional modules, this coincides with the usual cohomological support; see [3]. We remark that when M is non-zero $\operatorname{supp}_G M$ is non-empty. The relevance of support to us is that there are maps:

$$L(\mathsf{StMod}\,kG) \longleftarrow \sigma \qquad \qquad \{\mathsf{subsets} \ \mathsf{of} \ \mathcal{V}_G\}$$

$$\left\{\begin{array}{c} \mathsf{tensor} \ \mathsf{closed} \ \mathsf{localizing} \\ \mathsf{subcategories} \ \mathsf{of} \ \mathsf{StMod} \ kG \end{array}\right\}$$

where ι is the obvious inclusion, and τ and σ are defined as follows:

$$\tau(\mathsf{S}) = \bigcup_{M \in \mathsf{S}} \operatorname{supp}_G M \quad \text{and} \quad \sigma(\mathcal{U}) = \operatorname{L}\big(\bigoplus_{\mathfrak{p} \in \mathcal{U}} \varGamma_{\mathfrak{p}} k\big)$$

It is not hard to see that [4, Theorem 10.3] is equivalent to the following:

Theorem 4. The composition of any three consecutive maps in the diagram above is the identity. In particular, the maps are all bijections. \Box

From this one can deduce the 'tensor product theorem'; see [4, Theorem 11.1].

Corollary 5. For any kG-modules M and N one has

$$\operatorname{supp}_G(M \otimes_k N) = \operatorname{supp}_G M \cap \operatorname{supp}_G N.$$

In particular,
$$A(M) = \{N \mid \operatorname{supp}_G N \cap \operatorname{supp}_G M = \emptyset\}.$$

Using this result one can prove Theorem 2 without much ado. The next corollary extends Lemma 3 and characterizes Bousfield equivalent modules.

Corollary 6. One has $L(M) \leq L(N)$ if and only if $A(M) \leq A(N)$, if and only if $\sup_{R} M \subseteq \sup_{R} N$.

Local objects. In what follows, the set of morphisms in StMod kG between kG-modules M and N is denoted $\underline{Hom}_G(M, N)$. Once again inspired by the work in [7], we consider the right orthogonal of the M-acyclic modules:

$$A(M)^{\perp} = \{ N \in \mathsf{StMod}\, kG \mid \underline{\mathrm{Hom}}_G(X, N) = 0 \text{ for all } X \in A(M) \}.$$

The modules in this subcategory are said to be M-local. Note that the subcategory of M-local objects is equivalent to the Verdier quotient of $\operatorname{StMod} kG$ by $\operatorname{A}(M)$. Again, one is faced with the problem of classifying such subcategories. To address it, we consider the right adjoint $\Lambda^{\mathfrak{p}} = \operatorname{Hom}_k(\Gamma_{\mathfrak{p}}k, -)$ to $\Gamma_{\mathfrak{p}}$. In [6] we introduced the cosupport of a kG-module M to be the subset

$$\operatorname{cosupp}_R M = \{ \mathfrak{p} \in \mathcal{V}_G \mid \Lambda^{\mathfrak{p}} M \neq 0 \}.$$

The cosupport of M is non-empty when $M \neq 0$; see [6, Theorem 4.5].

In what follows $\operatorname{Hom}_k(M,N)$ is viewed as a kG-module with diagonal action. The theorem below is a consequence of [6, Theorem 9.5] and [4, Theorem 10.3], which are the central results of the corresponding articles. Theorem 4, and the other results described above, can be easily deduced from it.

Theorem 7. For any kG-modules M and N one has

$$\operatorname{cosupp}_G \operatorname{Hom}_k(M, N) = \operatorname{supp}_G M \cap \operatorname{cosupp}_G N$$
.

In particular, $\operatorname{Hom}_k(M,N)=0$ if and only if $\operatorname{supp}_G M\cap\operatorname{cosupp}_G N=\varnothing$.

This result and Corollary 5 yield

Corollary 8. One has
$$A(M)^{\perp} = \{N \mid \operatorname{cosupp}_G N \subseteq \operatorname{supp}_G M\}$$
.

Using this result and [6, Theorem 11.3], one can prove an analogue of Theorem 2, yielding bijections between subcategories of form $A(M)^{\perp}$, the Hom closed colocalizing subcategories of StMod kG, and the set of subsets of \mathcal{V}_G .

In all this the cosupport of modules plays a central role, but we do not yet have a good understanding of its significance. In my lecture, I mentioned some examples from commutative algebra where we have been able to compute the cosupport of all finitely generated modules. These are discussed in detail in [6], where it is also explained that the functor $\Lambda^{\mathfrak{p}}$ is akin to completion at \mathfrak{p} , in the sense of commutative algebra.

References

- D. J. Benson, Representations and cohomology II, Cambridge Stud. Adv. Math., 32, Cambridge Univ. Press, Cambridge, 1991.
- [2] D. J. Benson, J. F. Carlson, and J. Rickard, Complexity and varieties for infinitely generated modules, II, Math. Proc. Camb. Phil. Soc. 120 (1996), 597-615.
- [3] D. J. Benson, S. B. Iyengar, and H. Krause, Local cohomology and support for triangulated categories, Ann. Sci. École Norm. Sup. (4) 41 (2008), 573–619.
- [4] D. J. Benson, S. B. Iyengar, and H. Krause, Stratifying modular representations of finite groups, Ann. of Math., 175 (2011), to appear, arxiv:0810.1339.
- [5] D. J. Benson, S. B. Iyengar, and H. Krause, Stratifying triangulated categories, J. Topology, to appear, arXiv:0910.0642.
- [6] D. J. Benson, S. B. Iyengar, and H. Krause, Colocalizing subcategories and cosupport, J. Reine Angew. Math., to appear, arXiv:1008.3701.
- [7] A. K. Bousfield, The Boolean algebra of spectra, Comm. Math. Helv. 54 (1979), 368–377.Correction: Comm. Math. Helv. 58 (1983), 599–600.
- [8] G. Grätzer, General lattice theory, Birkhäuser Verlag, Basel, 2003.
- [9] M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., vol. 610, Amer. Math. Soc., (1997).
- [10] S. B. Iyengar and H. Krause, The Bousfield lattice of a triangulated category and stratification, in preparation.