
Stratifying the derived category of a complete intersection
Srikanth B. Iyengar

Let A be a commutative noetherian ring and D the bounded derived category of
finitely generated A-modules; its objects are complexes M of A-modules such that
A-module Hi(M) is finitely generated for each i and zero when |i| � 0. There is
a natural triangulated category structure on D, with exact triangles arising from
mapping cone sequences of morphisms of complexes. A non-empty full subcategory
of D is thick if it is a triangulated subcategory and closed under retracts; see [15].

An intersection of thick subcategories is again thick so each M in D is con-
tained in a smallest, with respect to inclusion, thick subcategory, which I denote
thickA(M). The objects of thickA(M) are exactly those complexes which can
be built out of M using suspensions, finite direct sums, exact triangles, and re-
tracts; in fact, the last two operations suffice. Thus, for example, a complex is in
thickA(A) if and only if it is perfect, i.e. isomorphic in Df(R) to a finite complex
of finitely generated projective modules.

My talk was concerned with the following problem: Classify the thick subcate-
gories of D. I started by trying to explain why thick subcategories of Df(A) are
interesting from the point of view of homological algebra; this is discussed also in
[11]. Such investigations concerning derived categories started with a remarkable
result of Hopkins [10] and Neeman [13]:

If M,N are perfect complexes with suppAM ⊆ suppAN , then M ∈ thickA(N).

Here suppAM is the set {p ∈ Spec(A) | H(M)p 6= 0}, the support of M . Various
proofs of this theorem are discussed in [12]; for applications, see [8]. Given this
theorem, it is easy to prove, see [13], that there is a bijection of sets:{

Thick subcategories

of thickA(A)

}
σ

//

τ
oo

{Specialization closed
subsets of SpecA

}
where a subset of SpecA is specialization closed if it is a (possibly infinite) union
of closed subsets. The maps in question are

σ(C) =
⋃
M∈C

suppRM and τ(V) = {M | suppRM ⊆ V}

This ‘thick subcategory’ theorem solves the classification problem stated when A is
regular, for then thickA(A) = D. Similar results have since been established for the
derived category of perfect complexes of coherent sheaves on a noetherian scheme,
by Thomason [14]; the stable module category of finite dimensional modules over
the group algebra of a finite group, by Benson, Carlson, and Rickard [5]; and the
category of perfect differential modules over a commutative noetherian ring, by
Avramov, Buchweitz, Christensen, Piepmeyer and myself [2].

Let nowA be a complete intersection; for simplicity assumeA = k[x1, . . . , xn]/I,
where k is a field, x1, . . . , xn are indeterminates, and I is generated by a regular
sequence. Set c = n − dimA and let A[χ1, . . . , χc] be the ring of cohomology
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operators constructed by Avramov and Sun [4]. Thus, χ1, . . . , χc are indetermi-
nates over A of cohomological degree 2, and for each pair of complexes M,N of
A-modules, Ext∗A(M,N) is a graded R-module, which is finitely generated when
M,N are in D; see [4, §§2,5], and also Gulliksen [9], for details. Set

VA(M) = suppR Ext∗A(M,M) ⊆ SpecA[χ1, . . . , χc] .

This construction is akin to the support variety of M in the sense of Avramov and
Buchweitz [1]; only, it takes into account also the support of M as a complex of
A-modules; see [7, §11]. A positive answer to the conjecture below takes us a long
way towards a classification of thick subcategories of D for complete intersections.

Conjecture: For any M,N in D, if VA(M) ⊆ VA(N), then M ∈ thickA(N).
There are two points of view concerning homological algebra over complete

intersections which lead one to such a statement: it is akin to that over regular
rings, once we take into account the action of the cohomology operators; it is
akin to that of group algebras of finite groups. Indeed, a result from [5] settles
the conjecture above for the case when k is of positive characteristic p and I =
(xp1, . . . , x

p
n), for then A is the group algebra of (Z/pZ)n.

The simplest ring not covered by [5] is A = k[x]/(xd) with d ≥ 3. The inde-
composable A-modules are precisely Mi = k[x]/(xi), for 1 ≤ i ≤ d. It is easy to
verify that

VA(Mi) =

{
{(x)} for i 6= d

{(x), (x, χ)} for i = d

Since M1 = k and Md = A, the conjecture postulates that for 1 ≤ i ≤ d − 1 the
subcategory thickA(Mi) contains both A and k. In my talk, I demonstrated that
this is indeed the case. This example is atypical for a general complete intersection
is not of finite representation type, and one cannot expect to settle the conjecture
with such direct computations.

Recently Benson, Krause, and I [6] gave a rather different proof of the result in
[2]. It builds on the work in [3], which develops new tools for studying modules
and complexes over complete intersections, and in [7], which develops a theory of
local cohomology for the action of the ring of cohomology operators A[χ1, . . . , χc]
on complexes of A-modules. The technique in [6] can be adapted to settle the
conjecture above for all Artin complete intersection rings. The general case remains
open, but I am optimistic that it will be settled in the near future.
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