Steiner systems and configurations of points

Elena Guardo

University of Catania - Italy
BrianFest
Lincoln, NE, August 11-12, 2023

Research interests

- Combinatorial Design Theory involves applications in Coding Theory, Cryptography, and Computer Science.

Let I be a homogeneous ideal in the standard graded polynomial ring $R:=k\left[x_{0}, \ldots, x_{n}\right]$, where k is a field. Given an integer m, we denote by I^{m} the regular power of the ideal l. The m-th symbolic power of I is defined as

$$
I^{(m)}=\bigcap_{\mathfrak{p} \in \operatorname{Ass}(I)}\left(I^{m} R_{\mathfrak{p}} \cap R\right)
$$

where $\operatorname{Ass}(I)$ denotes the set of associated primes of I. If I is a radical ideal (this includes for instance squarefree monomial ideals and ideals of finite sets of points) then

$$
I^{(m)}=\bigcap_{\mathfrak{p} \in \operatorname{Ass}(I)} \mathfrak{p}^{m}
$$

Question

(Containment problem) Given a homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$, for what pairs $m, r \in \mathbb{N}$, does $I^{(m)} \subseteq I^{r}$ hold?

Fat Points

Given distinct points $P_{1}, \ldots, P_{s} \in \mathbb{P}^{n}$ and nonnegative integers m_{i} (not all 0), let

$$
Z=m_{1} p_{1}+\cdots+m_{s} p_{s}
$$

denote the scheme (called a fat point scheme) defined by the ideal $I_{Z}=\bigcap_{i=1}^{s}\left(I_{P_{i}}^{m_{i}}\right) \subseteq k\left[\mathbb{P}^{n}\right]$, where $I_{P_{i}}$ is the ideal generated by all homogeneous polynomials vanishing at P_{i}.

- Containment problem also helps us to bound certain useful invariants like Waldschmidt constant, $\widehat{\alpha}(I)$ of an ideal I defined as

$$
\widehat{\alpha}(I)=\lim _{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m}
$$

where $\alpha(I)$ is the minimum integer d such that $I_{d} \neq(0)$. In our language, the problem was to determine the minima
degree of a hypersurface that passed through a collection of points with prescribed multiplicities.

- Containment problem also helps us to bound certain useful invariants like Waldschmidt constant, $\widehat{\alpha}(I)$ of an ideal $/$ defined as

$$
\widehat{\alpha}(I)=\lim _{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m}
$$

where $\alpha(I)$ is the minimum integer d such that $I_{d} \neq(0)$.

- In our language, the problem was to determine the minimal degree of a hypersurface that passed through a collection of points with prescribed multiplicities.

An other tool useful to measure the non containment among symbolic and ordinary powers of ideals is the notion of resurgence $\rho(I)$ of an ideal I, introduced by Bocci-Harbourne that gives some notion of how small the ratio m / r can be and still be sure to have $I^{(m)} \subseteq I^{r}$; specifically,

Definition

Let I be a non zero, proper ideal in a commutative ring R, the resurgence of the ideal I is given by

$$
\rho(I)=\sup \left\{\left.\frac{m}{r} \right\rvert\, \quad I^{(m)} \nsubseteq I^{r}\right\}
$$

It always satisfies $\rho(I) \geq 1$. In general, it is extremely difficult to estimate the exact value for $\rho(I)$. An asymptotic versions of the resurgence was introduced in the paper Guardo- Harbourne - Van Tuyl.

Definition

For a non zero, proper homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$, the asymptotic resurgence $\rho_{a}(I)$ is defined as follows:

$$
\rho_{a}(I)=\sup \left\{\left.\frac{m}{r} \right\rvert\, \quad I^{(m t)} \nsubseteq I^{r t}, \quad \text { for all } \quad t \gg 0\right\} .
$$

Harbourne-Huneke conjecture

The following slight different version of the Containement problem was introduced by Harbourne and Huneke. Recall that the big height of an ideal / refers to the maximum of all the heights of its associated prime ideals.

Conjecture

(Stable Harbourne Conjecture) Given a non zero, proper, homogeneous , radical ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ with big height h, then

$$
I^{(h r-h+1)} \subseteq I^{r}
$$

for all $r \gg 0$.

Conjecture

(Stable Harbourne-Huneke Conjecture) Let $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous radical ideal of big height h. Let $\mathcal{M}=\left(x_{0}, \ldots, x_{n}\right)$ be the graded maximal ideal, then for $r \gg 0$,
(1) $I^{(h r)} \subseteq \mathcal{M}^{r(h-1)} \|^{r}$
(2) $I^{(h r-h+1)} \subseteq \mathcal{M}^{(r-1)(h-1)} I^{r}$.

Steiner Systems

Definition

A Steiner system (V, B) of type $S(t, n, v)$, with $t<n \leq v$, is a collection B of n-subsets (or n-tuples called blocks) of V with $v=|V|$ such that each t-tuple of V is contained in a unique block in B.

The elements in V are called vertices or points and those of B are called blocks.

Existence of Steiner Systems

- The existence of a Steiner system strongly depends on the parameters (t, n, v). For instance if $t=2$ and $n=3$ then $v \equiv 1,3 \bmod (6)$ must hold.

Steiner

Existence of Steiner Systems

- The existence of a Steiner system strongly depends on the parameters (t, n, v). For instance if $t=2$ and $n=3$ then $v \equiv 1,3 \bmod (6)$ must hold.
- There are known necessary conditions for the existence of a Steiner system of type $S(t, n, v)$ that are not in general sufficient.

If a Steiner system (V, B) of type $S(t, n, v)$ exists, then $|B|=\frac{\binom{v}{t}}{\binom{n}{t}}$.

Example

$S(2,3,7)$

One of the simplest and most known examples of Steiner system is the Fano Plane. It is unique up to isomorphism and it is a Steiner system of type $S(2,3,7)$ with block set

$$
\begin{gathered}
B:=\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\}, \\
\{3,4,7\},\{3,5,6\}\} .
\end{gathered}
$$

Problem

Problem

Given any Steiner System $S(t, n, v)$ can we construct a suitable configuration of points and its defining ideal?

Results

For a Complement of a Steiner configuration of points in \mathbb{P}_{k}^{n},

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.

For a Complement of a Steiner configuration of points in \mathbb{P}_{k}^{n},

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.
- We show that Stable Harbourne Conjecture and Stable Harbourne-Huneke Conjecture.
Ne also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement (See Toheneanu and Van Tuyl).

For a Complement of a Steiner configuration of points in \mathbb{P}_{k}^{n},

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.
- We show that Stable Harbourne Conjecture and Stable Harbourne-Huneke Conjecture.
- We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement (See Toheneanu and Van Tuyl).

Star Configurations

We follow Geramita-Harbourne-Migliore. Let
$\mathcal{H}=\left\{H_{1}, \ldots, H_{v}\right\}$ be a collection of $v \geq 1$ distinct hyperplanes in $\mathbb{P}^{n}, n \leq v$, and suppose $H_{i}=V\left(\ell_{i}\right), i=1, \ldots, v$, where $\ell_{1}, \ldots, \ell_{v} \in R:=K\left[x_{1}, \ldots, x_{n}\right]$ are some linear forms. Suppose that the hyperplanes meet properly, that is the intersection of any j of these hyperplanes is either empty or has codimension j. For any $1 \leq c \leq \min \{v, n\}$, the codimension c star configuration with skeleton \mathcal{H} is the union of the codimension c linear varieties defined by the intersections of these hyperplanes, taken c at a time, $V_{c}(\mathcal{H}):=\bigcup_{1 \leq i_{1}<\cdots<i_{c} \leq v} H_{i_{1}} \cap \cdots \cap H_{i_{c}}$. This variety has defining ideal in R :

$$
I\left(V_{c}(\mathcal{H})\right)=\bigcap_{1 \leq i_{1}<\cdots<i_{c} \leq v}\left\langle\ell_{i_{1}}, \ldots, \ell_{i_{c}}\right\rangle
$$

Steiner Configurations of points

Let (V, B) be a Steiner system of type $S(t, n, v)$ with $t<n \leq v$. We associate to B the following set of points in \mathbb{P}^{n} :

- Let $\mathcal{H}:=\left\{H_{1}, \ldots H_{v}\right\}$ be a collection of $v \geq 1$ distinct hyperplanes $H_{i}=V\left(\ell_{i}\right)$ of \mathbb{P}^{n} defined by the linear forms ℓ_{i} for $i=1, \ldots, v$. Assume that any n hyperplanes, $n \leq v$, in \mathcal{H} meet in a point.

Steiner Configurations of points

Let (V, B) be a Steiner system of type $S(t, n, v)$ with
$t<n \leq v$. We associate to B the following set of points in \mathbb{P}^{n} :

- Let $\mathcal{H}:=\left\{H_{1}, \ldots H_{v}\right\}$ be a collection of $v \geq 1$ distinct hyperplanes $H_{i}=V\left(\ell_{i}\right)$ of \mathbb{P}^{n} defined by the linear forms ℓ_{i} for $i=1, \ldots, v$. Assume that any n hyperplanes, $n \leq v$, in \mathcal{H} meet in a point.
- Given a n-subset $\sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \in B$, we denote by $P_{\mathcal{H}, \sigma}$ the point intersection of the hyperplanes $H_{\sigma_{1}}, \ldots, H_{\sigma_{n}}$. vanishing ideal of the point $P_{\mathcal{H}, \sigma}$.

Steiner Configurations of points

Steiner

Let (V, B) be a Steiner system of type $S(t, n, v)$ with $t<n \leq v$. We associate to B the following set of points in \mathbb{P}^{n} :

- Let $\mathcal{H}:=\left\{H_{1}, \ldots H_{v}\right\}$ be a collection of $v \geq 1$ distinct hyperplanes $H_{i}=V\left(\ell_{i}\right)$ of \mathbb{P}^{n} defined by the linear forms ℓ_{i} for $i=1, \ldots, v$. Assume that any n hyperplanes, $n \leq v$, in \mathcal{H} meet in a point.
- Given a n-subset $\sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \in B$, we denote by $P_{\mathcal{H}, \sigma}$ the point intersection of the hyperplanes $H_{\sigma_{1}}, \ldots, H_{\sigma_{n}}$.
- Then the ideal $I_{P_{\mathcal{H}, \sigma}}=\left(\ell_{\sigma_{1}}, \ldots, \ell_{\sigma_{n}}\right) \subseteq k\left[\mathbb{P}^{n}\right]$ is the vanishing ideal of the point $P_{\mathcal{H}, \sigma}$.

Steiner Configurations of points and its ideal

Definition

Let (V, B) be a Steiner system of type $S(t, n, v)$ with
$t<n \leq v$. We associate to B the following set of points in \mathbb{P}^{n}

$$
X_{\mathcal{H}, B}:=\bigcup_{\sigma \in B} P_{\mathcal{H}, \sigma}
$$

and its defining ideal

$$
I_{X_{\mathcal{H}, B}}:=\bigcap_{\sigma \in B} I_{P_{\mathcal{H}, \sigma}} .
$$

We call $X_{\mathcal{H}, B}$ the Steiner configuration of points associated to the Steiner system (V, B) of type $S(t, n, v)$ with respect to \mathcal{H} (or just X_{B} if there is no ambiguity).

Complement of Steiner Configurations of points and

 its ideal
Definition

Let (V, B) be a Steiner system of type $S(t, n, v)$ with

Steiner $t<n \leq v$. Denote by $C_{(n, v)}$ the set containing all the n-subsets of V, we associate to $C_{(n, v)} \backslash B$ the following set of points in \mathbb{P}^{n}

$$
X_{\mathcal{H}, C_{(n, v)} \backslash B}:=\cup_{\sigma \in C_{(n, v)} \backslash B} P_{\mathcal{H}, \sigma}
$$

and its defining ideal

$$
X_{X_{\mathcal{H}, C_{(n, v)} \backslash B}}:=\cap_{\sigma \in C_{(n, v)} \backslash B} I_{P_{\mathcal{H}, \sigma}} .
$$

We call $X_{\mathcal{H}, C_{(v, n)} \backslash B}$ the Complement of a Steiner configuration of points with respect to \mathcal{H} (or C -Steiner X_{C} if there is no ambiguity).

Steiner Configurations of points and Star Configurations

Steiner

- We have that $X_{\mathcal{H}, C_{(n, v)}}$ is a special type of the so called star configuration of $\binom{v}{n}$ points in \mathbb{P}^{n}, i.e., the codimension n star configuration in \mathbb{P}^{n}.
- We have that $X_{\mathcal{H}, C_{(n, v)}}$ is a special type of the so called star configuration of $\binom{v}{n}$ points in \mathbb{P}^{n}, i.e., the codimension n star configuration in \mathbb{P}^{n}.
- Thus, a Steiner configuration of points and its Complement are subschemes of a star configuration of $\binom{v}{n}$ points in \mathbb{P}^{n}.

Remark

Since the set $X_{\mathcal{H}, B}$ contains $|B|$ points, we have that

$$
\left|X_{\mathcal{H}, C_{(n, v)} \backslash B}\right|=\operatorname{deg} X_{\mathcal{H}, C_{(n, v)} \backslash B}=\binom{v}{n}-|B|=\binom{v}{n}-\frac{\binom{v}{t}}{\binom{n}{t}} .
$$

Example

Consider the Steiner configuration associated to (V, B) of type $S(2,3,7)$. Take $\mathcal{H}:=\left\{H_{1}, \ldots, H_{7}\right\}$ a collection of 7 distinct hyperplanes H_{i} in $\mathbb{P}^{3} i=1, \ldots, 7$ with the property that any 3 of them meet in a point $P_{\mathcal{H}, \sigma}=H_{\sigma_{1}} \cap H_{\sigma_{2}} \cap H_{\sigma_{3}}$, where $\sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \in B$.
We get

- $X_{\mathcal{H}, B}$ is a Steiner configuration consisting of 7 points in \mathbb{P}^{3}

Example

Consider the Steiner configuration associated to (V, B) of type $S(2,3,7)$. Take $\mathcal{H}:=\left\{H_{1}, \ldots, H_{7}\right\}$ a collection of 7 distinct hyperplanes H_{i} in $\mathbb{P}^{3} i=1, \ldots, 7$ with the property that any 3 of them meet in a point $P_{\mathcal{H}, \sigma}=H_{\sigma_{1}} \cap H_{\sigma_{2}} \cap H_{\sigma_{3}}$, where $\sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \in B$.
We get

- $X_{\mathcal{H}, B}$ is a Steiner configuration consisting of 7 points in \mathbb{P}^{3}
- $X_{\mathcal{H}, C_{(3,7)} \backslash B}$ is a C-Steiner configuration consisting of $\binom{7}{3}-7=28$ points in \mathbb{P}^{3}.

Monomial ideals and Graph Theory

Steiner

- Given a graph G with vertices $\left\{x_{1}, \ldots, x_{v}\right\}$, we associate the ideal I_{G} in $k\left[x_{1}, \ldots, x_{v}\right]$ generated by the quadratic monomials $x_{i} x_{j}$ such that x_{i} is adjacent to x_{j}.
From known results in the literature, ideals generated by squarefree monomials have a beautiful combinatorial interpretation in terms of simplicial complexes.

Monomial ideals and Graph Theory

- Given a graph G with vertices $\left\{x_{1}, \ldots, x_{v}\right\}$, we associate the ideal I_{G} in $k\left[x_{1}, \ldots, x_{v}\right]$ generated by the quadratic monomials $x_{i} x_{j}$ such that x_{i} is adjacent to x_{j}.
- From known results in the literature, ideals generated by squarefree monomials have a beautiful combinatorial interpretation in terms of simplicial complexes.

Simplicial Complexes and Matroids

Definition

A simplicial complex Δ over a set of vertices $V=\left\{x_{1}, \ldots, x_{v}\right\}$ is a collection of subsets of V satisfying the following two conditions:
(1) $\left\{x_{i}\right\} \in \Delta$ for all $1 \leq i \leq v$
(2) if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$.

An element F of Δ is called a face, and the dimension of a face F of Δ is $|F|-1$, where $|F|$ is the number of vertices of F.

- The Alexander dual of a simplicial complex Δ on $V=\left\{x_{1}, \ldots, x_{v}\right\}$ is the simplicial complex Δ^{V} on V with faces $V \backslash \sigma$, where $\sigma \notin \Delta$.
\qquad $k[\Delta]:=R / I_{\Delta}$ is the Stanley-Reisner ring of the simplicial complex Δ.
- The Alexander dual of a simplicial complex Δ on $V=\left\{x_{1}, \ldots, x_{v}\right\}$ is the simplicial complex Δ^{\vee} on V with faces $V \backslash \sigma$, where $\sigma \notin \Delta$.
- The Stanley-Reisner ideal of Δ is the ideal

$$
\begin{aligned}
& I_{\Delta}:=\left(x^{\sigma} \mid \sigma \notin \Delta\right) \text { of } R=k\left[x_{1}, \ldots, x_{v}\right], \text { where } \\
& x^{\sigma}=\Pi_{i \in \sigma} x_{i} .
\end{aligned}
$$

\qquad $k[\Delta]:=R / I_{\Delta}$ is the Stanley-Reisner ring of the simplicial complex Δ.

- The Alexander dual of a simplicial complex Δ on $V=\left\{x_{1}, \ldots, x_{v}\right\}$ is the simplicial complex Δ^{V} on V with faces $V \backslash \sigma$, where $\sigma \notin \Delta$.
- The Stanley-Reisner ideal of Δ is the ideal
$I_{\Delta}:=\left(x^{\sigma} \mid \sigma \notin \Delta\right)$ of $R=k\left[x_{1}, \ldots, x_{v}\right]$, where $x^{\sigma}=\Pi_{i \in \sigma} x_{i}$.
- It is well known that the Stanley-Reisner ideals are squarefree monomial ideals. The quotient ring $k[\Delta]:=R / I_{\Delta}$ is the Stanley-Reisner ring of the simplicial complex Δ.

If V is a set v points, we denote by $k[V]:=k\left[x_{1}, \ldots, x_{v}\right]$ the standard graded polynomial ring in v variables. Given a n-subset of $V, \sigma:=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subseteq V$, we will write

$$
\mathfrak{p}_{\sigma}:=\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right) \subseteq k[V]
$$

for the prime ideal generated by the variables indexed by σ, and

$$
M_{\sigma}:=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \in k[V]
$$

for the monomial given by the product of the variables indexed by σ.

Let $n \leq v$ be positive integers, and V a set of v points; recall that $C_{(n, v)}$ is the set containing all the n-subsets of V.

Definition

If $T \subset C_{(n, v)}$, we define two ideals

$$
I_{T}:=\left(M_{\sigma} \mid \sigma \in T\right) \subseteq k[V]
$$

and

$$
J_{T}:=\bigcap_{\sigma \in T} \mathfrak{p}_{\sigma} \subseteq k[V]
$$

called the face ideal of T and the cover ideal of T, respectively.

Since J_{T} is a squarefree monomial ideal, the m-th symbolic power of J_{T} (Theorem 3.7 in Cooper-Ha) is

$$
J_{T}^{(m)}:=\bigcap_{\sigma \in T} \mathfrak{p}_{\sigma}^{m}
$$

Definition

A matroid Δ on a vertex set $\{1, \ldots, v\}$ is a non-empty collection of subsets of $\{1, \ldots, v\}$ that is closed under inclusion and satisfies the following property: If F and G are Δ and $|F|>|G|$ then there exists $i \in F \backslash G$ such that $G \cup\{i\} \in \Delta$.

Equivalently, a matroid is a simplicial complex Δ such that, for every subset $F \subset\{1, \ldots, v\}$, the restriction $\Delta \mid F=\{G \in \Delta \mid G \subset F\}$ is pure, that is, all its facets have the same dimension.

Varbaro and Minh - Trung have independently shown

Theorem

Let Δ be a simplicial complex on $\{1, \ldots, v\}$. Then $k[V] / I_{\Delta}^{(m)}$ is Cohen-Macaulay for each $m \geq 1$ if and only if Δ is a matroid.

Main results

Theorem

Let (V, B) be a Steiner system of type $S(t, n, v)$. Then Δ_{C} is a matroid.

Theorem
 Let (V, B) be a Steiner system of type $S(t, n, v)$. Then $k[V] / I_{\Delta_{C}}^{(m)}$ is Cohen-Macaulay for each $m \geq 1$.

Main result for symbolic powers

Theorem

$I_{X_{\mathcal{H}, c}}^{(m)} \subseteq k\left[\mathbb{P}^{n}\right]$ and $I_{\Delta_{c}}^{(m)} \subseteq k[V]$ share the same homological invariants.

The Cohen-Macaulay property of $k[V] / I_{\Delta_{C}}^{(m)}$ also allows us to look at $I_{X_{\mathcal{H}, C}}^{(m)}$ as a proper hyperplane section of $I_{\Delta_{C}}^{(m)}$. This construction is quite standard but is very useful.

Using the previous results, we have the following theorem:

Theorem

Let (V, B) be a Steiner system of type $S(t, n, v)$. Then
i) $\alpha\left(I_{X_{C}}\right)=v-n$;
ii) $\alpha\left(I_{X_{c}}^{(q)}\right)=v-n+q$, for $2 \leq q<n$;
iii) $\alpha\left(I_{X_{c}}^{(m)}\right)=\alpha\left(I_{X_{c}}^{(q)}\right)+p v$, where $m=p n+q$ and $0 \leq q<n$ and $\alpha\left(I_{X_{c}}^{(n)}\right)=\alpha\left(I_{X_{c}}^{(0)}\right)+v=v$.

Corollary

If (V, B) is a Steiner system of type $S(t, n, v)$, then the Waldschmidt constant of $I_{X_{C}}$ is

$$
\widehat{\alpha}\left(I_{X_{C}}\right)=\frac{v}{n} .
$$

Proposition

If (V, B) is a Steiner system $S(t, n, v)$, then the h-vector of X_{C} is

$$
h_{X_{C}}=\left(1, n,\binom{n+1}{n-1}, \cdots,\binom{v-2}{n-1},\binom{v-1}{n-1}-|B|\right) .
$$

The regularity of $I_{X_{C}}$ is an easy consequence of the previous result:

Corollary

$$
\operatorname{reg}\left(I_{X_{c}}\right)=\alpha\left(I_{X_{c}}\right)+1=v-n+1
$$

Resurgence

Corollary

Let $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ be the ideal defining complement of a Steiner Configuration of points in \mathbb{P}_{k}^{n}. Then, $\rho(I)<n$.

Containment

Theorem

[Ballico,Favacchio, -, Milazzo, Thomas] Let I $\subseteq k\left[x_{0}, \ldots, x_{n}\right.$] be the ideal defining complement of a Steiner Configuration of points in \mathbb{P}_{k}^{n}. Then I satisfies
(1) Stable Harbourne-Huneke Conjecture;
(2) Stable Harbourne Conjecture.

Application to coding theory

Steiner

- There are several ways to compute the minimum distance. One of them comes from linear algebra.

Application to coding theory

Steiner

- There are several ways to compute the minimum distance. One of them comes from linear algebra.
- Let k be any field and $X=\left\{P_{1}, \ldots, P_{r}\right\} \subseteq \mathbb{P}^{n}$ a not degenerate finite set of reduced points. The linear code associated to X denoted by $\mathcal{C}(X)$ is the image of the injective linear map $\varphi: k^{n+1} \rightarrow k^{r}$.

Parameters of a linear code

- We are interested in three parameters $\left[|X|, k_{X}, d_{X}\right]$ that we use to evaluate the goodness of a linear code.

Steiner The first number X is the cardinality of X. The number k_{X} is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to The number d_{X} denotes the minimal distance of $C(X)$, that is the minimum of the Hamming distance of two elements in $C(X)$

Parameters of a linear code

- We are interested in three parameters $\left[|X|, k_{X}, d_{X}\right]$ that we use to evaluate the goodness of a linear code.
- The first number $|X|$ is the cardinality of X. The number k_{X} is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to φ.

The number d_{x} denotes the minimal distance of $C(X)$
that is the minimum of the Hamming distance of two elements in $\mathcal{C}(X)$.

Parameters of a linear code

- We are interested in three parameters $\left[|X|, k_{X}, d_{X}\right]$ that we use to evaluate the goodness of a linear code.
- The first number $|X|$ is the cardinality of X. The number k_{X} is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to φ.
- The number d_{X} denotes the minimal distance of $\mathcal{C}(X)$, that is the minimum of the Hamming distance of two elements in $\mathcal{C}(X)$.
- Given a set of points $X=\left\{P_{1}, \ldots, P_{r}\right\} \subseteq \mathbb{P}^{n}$, the linear code associated to X has generating matrix of type $(n+1) \times r$

$$
A(X)=\left[c_{1} \ldots c_{r}\right]
$$

where c_{i} are the coordinates of P_{i}.
Assume that $A(X)$ has no proportional columns is equivalent to say that the points P_{i} are distinct points in $\mathbb{P} n$ and $n<r$
Then $|X|=r$.Rank $(A(X))=n+1$ and $r-d x$ is the maximum number of these points that fit in a hyperplane of \mathbb{P}^{n}.

- Given a set of points $X=\left\{P_{1}, \ldots, P_{r}\right\} \subseteq \mathbb{P}^{n}$, the linear code associated to X has generating matrix of type $(n+1) \times r$

$$
A(X)=\left[c_{1} \ldots c_{r}\right]
$$

where c_{i} are the coordinates of P_{i}.

- Assume that $A(X)$ has no proportional columns is
equivalent to say that the points P_{i} are distinct points in

Assume that $A(X)$ has no proportional columns is
equivalent to say that the points P_{i} are distinct points in \mathbb{P}^{n} and $n<r$
maximum number of these points that fit in a hyperplane

- Given a set of points $X=\left\{P_{1}, \ldots, P_{r}\right\} \subseteq \mathbb{P}^{n}$, the linear code associated to X has generating matrix of type $(n+1) \times r$

$$
A(X)=\left[c_{1} \ldots c_{r}\right]
$$

where c_{i} are the coordinates of P_{i}.

- Assume that $A(X)$ has no proportional columns is equivalent to say that the points P_{i} are distinct points in \mathbb{P}^{n} and $n<r$
- Then $|X|=r, \operatorname{Rank}(A(X))=n+1$ and $r-d_{X}$ is the maximum number of these points that fit in a hyperplane of \mathbb{P}^{n}.

Geometric interpretation of d_{X}

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_{X} is also the minimum number such that $r-d_{X}$ columns in $A(X)$ span an n-dimensional space.

Geometric interpretation of d_{X}

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_{X} is also the minimum number such that $r-d_{X}$ columns in $A(X)$ span an n-dimensional space.
The generating matrix $A(X)$ of an $\left[|X|, n+1, d_{X}\right]$-linear that $r-d_{X}$ columns in $A(X)$ span an n-dimensional space
- The generating matrix $A(X)$ of an $\left[|X|, n+1, d_{X}\right]$-linear code \mathcal{C} naturally determines a matroid $M(\mathcal{C})$.
Denoted by hyp (X) the maximum number of points contained in some hyperplane, d_{X} has also geometrical interpretation, that is

Geometric interpretation of d_{X}

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_{X} is also the minimum number such that $r-d_{X}$ columns in $A(X)$ span an n-dimensional space.
- The generating matrix $A(X)$ of an $\left[|X|, n+1, d_{X}\right]$-linear code \mathcal{C} naturally determines a matroid $M(\mathcal{C})$.
- Denoted by hyp (X) the maximum number of points contained in some hyperplane, d_{X} has also geometrical interpretation, that is

$$
d_{X}=|X|-\operatorname{hyp}(X)
$$

Parameters of a Steiner System

Steiner

Theorem
Let (V, B) be a Steiner system $S(t, n, v)$ with $|V|=v$. Then the parameters of the linear code defined by a Steiner configuration of points X_{B} are $\left[|B|, n+1, d_{X_{B}}\right]$ where

$$
d_{X_{B}}=\frac{\binom{v}{t}}{\binom{n}{t}}-\frac{\binom{v-1}{t-1}}{\binom{n-1}{t-1}} .
$$

Parameters of the Complement

With the above results, we have

Theorem

Let (V, B) be a Steiner system $S(t, n, v)$ with $|V|=v$. Then the parameters of the linear code defined by a Complement of a Steiner configuration of points X_{C} are $\left[\begin{array}{l}\left.\binom{v}{n}-|B|, n+1, d_{X_{C}}\right]\end{array}\right.$ where

$$
d_{X_{C}}=\binom{v}{n}-\frac{\binom{v}{t}}{\binom{n}{t}}-\binom{v-1}{n-1}+\frac{\binom{v-1}{t-1}}{\binom{n-1}{t-1}} .
$$

Computing the linear code associated to the Steiner

 system $S(2,3,7)$.Consider the Steiner system $S(2,3,7)$.
For $i=1, \ldots, 7$, let $H_{i} \subseteq \mathbb{P}^{3}$ be the hyperplane defined by

$$
\begin{gathered}
\ell_{i}:=x+2^{i} y+3^{i} z+5^{i} w \\
A\left(x_{\mathcal{H}, B}\right):=\left(\begin{array}{ccccccc}
-15 & -1983 & -438045 & -350 & -639000 & 9315 & 104625 \\
20 & 1576 & 269060 & 160 & 240075 & -2610 & -25875 \\
-10 & -418 & -34230 & -35 & -3750 & 470 & 4250 \\
1 & 17 & 523 & 1 & 666 & -9 & -99
\end{array}\right)
\end{gathered}
$$

The parameters of the code $\mathcal{C}\left(X_{\mathcal{H}, B}\right)$ are $[7,4,4]$ and the parameters of the code $\mathcal{C}\left(X_{\mathcal{H}, C_{(3,7)} \backslash B}\right)$ are [28, 4, 16].

References

Steiner
(Rallico E., Favacchio G., Guardo E., Milazzo L. Steiner systems and configurations of points Designs, Codes, and Cryptography, 89(2), pp. 199-219, 2021
Rallico, E., Favacchio, G., Guardo, E., Milazzo, L., Thomas, A.C.
Steiner configurations ideals: Containment and colouring Mathematics, 9(3), pp. 1-15, 210, 2021

Steiner
configurations
Elena
Guardo

Thank you

