El en a Guardo

August 11-12.

Steiner systems and configurations of points

Elena Guardo

University of Catania - Italy

BrianFest Lincoln, NE, August 11-12, 2023

э

• Combinatorial Design Theory involves applications in Coding Theory, Cryptography, and Computer Science.

Steiner configurations

El en a Guardo

August 11-12.

P

Let I be a homogeneous ideal in the standard graded polynomial ring $R := k[x_0, \ldots, x_n]$, where k is a field. Given an integer m, we denote by I^m the regular power of the ideal I. The m-th symbolic power of I is defined as

$$I^{(m)} = \bigcap_{\mathfrak{p}\in Ass(I)} (I^m R_\mathfrak{p} \cap R)$$

where Ass(I) denotes the set of associated primes of I. If I is a radical ideal (this includes for instance squarefree monomial ideals and ideals of finite sets of points) then

$$I^{(m)} = \bigcap_{\mathfrak{p} \in Ass(I)} \mathfrak{p}^m.$$

Steiner configurations

> Elena Guardo

Elena Guardo

Question

(Containment problem) Given a homogeneous ideal $I \subseteq k[x_0, \ldots, x_n]$, for what pairs $m, r \in \mathbb{N}$, does $I^{(m)} \subseteq I^r$ hold?

★ ∃ ► 4

Given distinct points $P_1, \ldots, P_s \in \mathbb{P}^n$ and nonnegative integers m_i (not all 0), let

$$Z = m_1 p_1 + \cdots + m_s p_s$$

denote the scheme (called a fat point scheme) defined by the ideal $I_Z = \bigcap_{i=1}^{s} (I_{P_i}^{m_i}) \subseteq k[\mathbb{P}^n]$, where I_{P_i} is the ideal generated by all homogeneous polynomials vanishing at P_i .

Steiner configurations

> Elena Guardo

э

 Containment problem also helps us to bound certain useful invariants like Waldschmidt constant, α(I) of an ideal I defined as

$$\widehat{\alpha}(I) = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m},$$

where $\alpha(I)$ is the minimum integer d such that $I_d \neq (0)$.

 In our language, the problem was to determine the minimal degree of a hypersurface that passed through a collection of points with prescribed multiplicities.

Steiner configurations

Elena Guardo

August 11-12

 Containment problem also helps us to bound certain useful invariants like Waldschmidt constant, α(I) of an ideal I defined as

$$\widehat{\alpha}(I) = \lim_{m\to\infty} \frac{\alpha(I^{(m)})}{m},$$

where $\alpha(I)$ is the minimum integer d such that $I_d \neq (0)$.

 In our language, the problem was to determine the minimal degree of a hypersurface that passed through a collection of points with prescribed multiplicities.

Steiner configurations

Elena Guardo

August 11-12

An other tool useful to measure the non containment among symbolic and ordinary powers of ideals is the notion of *resurgence* $\rho(I)$ of an ideal I, introduced by Bocci-Harbourne that gives some notion of how small the ratio m/r can be and still be sure to have $I^{(m)} \subseteq I^r$; specifically,

Definition

Let I be a non zero, proper ideal in a commutative ring R, the *resurgence* of the ideal I is given by

$$\rho(I) = \sup\left\{\frac{m}{r}| \quad I^{(m)} \nsubseteq I^r\right\}.$$

Steiner configurations

> Elena Guardo

It always satisfies $\rho(I) \ge 1$. In general, it is extremely difficult to estimate the exact value for $\rho(I)$. An asymptotic versions of the resurgence was introduced in the paper Guardo-Harbourne - Van Tuyl.

Definition

For a non zero, proper homogeneous ideal $I \subseteq k[x_0, \ldots, x_n]$, the asymptotic resurgence $\rho_a(I)$ is defined as follows:

$$\rho_{a}(I) = \sup \left\{ \frac{m}{r} | I^{(mt)} \nsubseteq I^{rt}, \text{ for all } t \gg 0 \right\}.$$

Steiner configurations

Elena Guardo

э

The following slight different version of the Containement problem was introduced by Harbourne and Huneke. Recall that the *big height* of an ideal *I* refers to the maximum of all the heights of its associated prime ideals.

Steiner configurations

Conjecture

(Stable Harbourne Conjecture) Given a non zero, proper, homogeneous, radical ideal $I \subseteq k[x_0, \ldots, x_n]$ with big height h, then

$$I^{(hr-h+1)} \subseteq I^r$$

for all $r \gg 0$.

Conjecture

(Stable Harbourne-Huneke Conjecture) Let I ⊆ k[x₀,...,x_n] be a homogeneous radical ideal of big height h. Let M = (x₀,...,x_n) be the graded maximal ideal, then for r ≫ 0,
I^(hr) ⊆ M^{r(h-1)}I^r
I^(hr-h+1) ⊆ M^{(r-1)(h-1)}I^r.

Steiner configurations

> Elena Guardo

Steiner Systems

Definition

A Steiner system (V, B) of type S(t, n, v), with $t < n \le v$, is a collection B of n-subsets (or n-tuples called blocks) of V with v = |V| such that each t-tuple of V is contained in a unique block in B.

The elements in V are called vertices or points and those of B are called blocks.

Steiner configurations

> El en a Guardo

Existence of Steiner Systems

- The existence of a Steiner system strongly depends on the parameters (t, n, v). For instance if t = 2 and n = 3 then v ≡ 1,3 mod (6) must hold.
- There are known necessary conditions for the existence of a Steiner system of type S(t, n, v) that are not in general sufficient.

If a Steiner system (V, B) of type S(t, n, v) exists, then $|B| = \frac{\binom{V}{t}}{\binom{n}{t}}.$

Steiner configurations

Existence of Steiner Systems

- The existence of a Steiner system strongly depends on the parameters (t, n, v). For instance if t = 2 and n = 3 then v = 1,3 mod (6) must hold.
- There are known necessary conditions for the existence of a Steiner system of type S(t, n, v) that are not in general sufficient.

If a Steiner system (V, B) of type S(t, n, v) exists, then $|B| = \frac{\binom{v}{t}}{\binom{n}{t}}.$

Steiner configurations

Elena Guardo

August 11-12

S(2, 3, 7)

One of the simplest and most known examples of Steiner system is the Fano Plane. It is unique up to isomorphism and it is a Steiner system of type S(2,3,7) with block set

$$B := \{\{1,2,3\}, \{1,4,5\}, \{1,6,7\}, \{2,4,6\}, \{2,5,7\},$$

 $\{3,4,7\},\{3,5,6\}\}.$

Steiner configurations

> Elena Guardo

P

Problem

Steiner configurations

Elena Guardo

August 11-12.

Problem

Given any Steiner System S(t, n, v) can we construct a suitable configuration of points and its defining ideal?

P

For a Complement of a Steiner configuration of points in \mathbb{P}^n_k ,

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.
- We show that Stable Harbourne Conjecture and Stable Harbourne-Huneke Conjecture.
- We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement (See Toheneanu and Van Tuyl).

Steiner configurations

For a Complement of a Steiner configuration of points in \mathbb{P}_k^n ,

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.
- We show that Stable Harbourne Conjecture and Stable Harbourne-Huneke Conjecture.
- We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement (See Toheneanu and Van Tuyl).

Steiner configurations

> Elena Guardo

For a Complement of a Steiner configuration of points in \mathbb{P}_k^n ,

- We describe its Hilbert Function and Betti numbers, Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence.
- We show that Stable Harbourne Conjecture and Stable Harbourne-Huneke Conjecture.
- We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement (See Toheneanu and Van Tuyl).

Steiner configurati<u>ons</u>

Star Configurations

We follow Geramita-Harbourne-Migliore. Let $\mathcal{H} = \{H_1, \ldots, H_v\}$ be a collection of $v \ge 1$ distinct hyperplanes in \mathbb{P}^n , $n \leq v$, and suppose $H_i = V(\ell_i)$, $i = 1, \ldots, v$, where $\ell_1, \ldots, \ell_v \in R := K[x_1, \ldots, x_n]$ are some linear forms. Suppose that the hyperplanes *meet properly*, that is the intersection of any *j* of these hyperplanes is either empty or has codimension *j*. For any $1 \le c \le \min\{v, n\}$, the codimension c star configuration with skeleton \mathcal{H} is the union of the codimension clinear varieties defined by the intersections of these hyperplanes, taken c at a time, $V_c(\mathcal{H}) := \bigcup_{1 \le i_1 \le \dots \le i_c \le \gamma} H_{i_1} \cap \dots \cap H_{i_c}$. This variety has defining ideal in R:

$$I(V_c(\mathcal{H})) = \bigcap_{1 \leq i_1 < \cdots < i_c \leq v} \langle \ell_{i_1}, \dots, \ell_{i_c} \rangle$$

Steiner configurations

> Elena Guardo

э

Steiner Configurations of points

Let (V, B) be a Steiner system of type S(t, n, v) with $t < n \le v$. We associate to B the following set of points in \mathbb{P}^n :

- Let H := {H₁,...H_v} be a collection of v ≥ 1 distinct hyperplanes H_i = V(ℓ_i) of Pⁿ defined by the linear forms ℓ_i for i = 1,..., v. Assume that any n hyperplanes, n ≤ v, in H meet in a point.
- Given a *n*-subset $\sigma := \{\sigma_1, \ldots, \sigma_n\} \in B$, we denote by $P_{\mathcal{H},\sigma}$ the point intersection of the hyperplanes $H_{\sigma_1}, \ldots, H_{\sigma_n}$.
- Then the ideal I_{P_{H,σ}} = (ℓ_{σ1},..., ℓ_{σn}) ⊆ k[ℙⁿ] is the vanishing ideal of the point P_{H,σ}.

Steiner configurations

> Elena Guardo

August 11-12

・ 同 ト ・ ヨ ト ・ ヨ ト

Steiner Configurations of points

Let (V, B) be a Steiner system of type S(t, n, v) with $t < n \le v$. We associate to B the following set of points in \mathbb{P}^n :

- Let $\mathcal{H} := \{H_1, \ldots, H_v\}$ be a collection of $v \ge 1$ distinct hyperplanes $H_i = V(\ell_i)$ of \mathbb{P}^n defined by the linear forms ℓ_i for $i = 1, \ldots, v$. Assume that any *n* hyperplanes, $n \le v$, in \mathcal{H} meet in a point.
- Given a *n*-subset $\sigma := \{\sigma_1, \ldots, \sigma_n\} \in B$, we denote by $P_{\mathcal{H},\sigma}$ the point intersection of the hyperplanes $H_{\sigma_1}, \ldots, H_{\sigma_n}$.
- Then the ideal I_{P_{H,σ}} = (ℓ_{σ1},..., ℓ_{σn}) ⊆ k[ℙⁿ] is the vanishing ideal of the point P_{H,σ}.

Steiner configurations

> Elena Guardo

August 11-12

э

伺下 イヨト イヨト

Steiner Configurations of points

Let (V, B) be a Steiner system of type S(t, n, v) with $t < n \le v$. We associate to B the following set of points in \mathbb{P}^n :

- Let $\mathcal{H} := \{H_1, \ldots, H_v\}$ be a collection of $v \ge 1$ distinct hyperplanes $H_i = V(\ell_i)$ of \mathbb{P}^n defined by the linear forms ℓ_i for $i = 1, \ldots, v$. Assume that any *n* hyperplanes, $n \le v$, in \mathcal{H} meet in a point.
- Given a *n*-subset $\sigma := \{\sigma_1, \ldots, \sigma_n\} \in B$, we denote by $P_{\mathcal{H},\sigma}$ the point intersection of the hyperplanes $H_{\sigma_1}, \ldots, H_{\sigma_n}$.
- Then the ideal $I_{\mathcal{P}_{\mathcal{H},\sigma}} = (\ell_{\sigma_1}, \dots, \ell_{\sigma_n}) \subseteq k[\mathbb{P}^n]$ is the vanishing ideal of the point $\mathcal{P}_{\mathcal{H},\sigma}$.

Steiner configurations

Elena Guardo

August 11-12

э

Steiner Configurations of points and its ideal

Definition

Let (V, B) be a Steiner system of type S(t, n, v) with $t < n \le v$. We associate to B the following set of points in \mathbb{P}^n

$$X_{\mathcal{H},B} := \bigcup_{\sigma \in B} P_{\mathcal{H},\sigma}$$

and its defining ideal

$$I_{X_{\mathcal{H},B}} := \bigcap_{\sigma \in B} I_{P_{\mathcal{H},\sigma}}.$$

We call $X_{\mathcal{H},B}$ the Steiner configuration of points associated to the Steiner system (V, B) of type S(t, n, v) with respect to \mathcal{H} (or just X_B if there is no ambiguity).

Steiner configurations

> Elena Guardo

August 11-12.

Elena Guardo (UniCatania)

18 / 46

Complement of Steiner Configurations of points and its ideal

Definition

Let (V, B) be a Steiner system of type S(t, n, v) with $t < n \le v$. Denote by $C_{(n,v)}$ the set containing all the *n*-subsets of V, we associate to $C_{(n,v)} \setminus B$ the following set of points in \mathbb{P}^n

$$X_{\mathcal{H},C_{(n,v)}\setminus B}:=\cup_{\sigma\in C_{(n,v)}\setminus B} P_{\mathcal{H},\sigma}$$

and its defining ideal

$$I_{X_{\mathcal{H},C_{(n,v)}\setminus B}} := \cap_{\sigma\in C_{(n,v)}\setminus B} I_{P_{\mathcal{H},\sigma}}.$$

We call $X_{\mathcal{H},C_{(v,n)}\setminus B}$ the Complement of a Steiner configuration of points with respect to \mathcal{H} (or C-Steiner X_{C} if there is no ambiguity).

Steiner configurations

Steiner Configurations of points and Star Configurations

- We have that X_{H,C(n,v)} is a special type of the so called star configuration of (^v_n) points in Pⁿ, i.e., the codimension n star configuration in Pⁿ.
- Thus, a Steiner configuration of points and its Complement are subschemes of a star configuration of ^v_n points in Pⁿ.

Steiner configurations

Steiner Configurations of points and Star Configurations

- We have that X_{H,C(n,v)} is a special type of the so called star configuration of (^v_n) points in Pⁿ, i.e., the codimension n star configuration in Pⁿ.
- Thus, a Steiner configuration of points and its Complement are subschemes of a star configuration of ^v_n points in Pⁿ.

Steiner configurations

El en a Guardo

August 11-12

Remark

Since the set $X_{\mathcal{H},B}$ contains |B| points, we have that

$$|X_{\mathcal{H},C_{(n,v)}\setminus B}| = \deg X_{\mathcal{H},C_{(n,v)}\setminus B} = \binom{v}{n} - |B| = \binom{v}{n} - \frac{\binom{v}{t}}{\binom{n}{t}}.$$

★ Ξ ► 4 Ξ ►

21/46

< A

Example

Consider the Steiner configuration associated to (V, B) of type S(2,3,7). Take $\mathcal{H} := \{H_1, \ldots, H_7\}$ a collection of 7 distinct hyperplanes H_i in \mathbb{P}^3 $i = 1, \ldots, 7$ with the property that any 3 of them meet in a point $P_{\mathcal{H},\sigma} = H_{\sigma_1} \cap H_{\sigma_2} \cap H_{\sigma_3}$, where $\sigma = \{\sigma_1, \sigma_2, \sigma_3\} \in B$. We get

X_{H,B} is a Steiner configuration consisting of 7 points in P³
 X_{H,C(3,7)}\B is a C-Steiner configuration consisting of
 (⁷₄) - 7 = 28 points in P³.

Steiner configurations

Elena Guardo

August 11-12.

P

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Consider the Steiner configuration associated to (V, B) of type S(2, 3, 7). Take $\mathcal{H} := \{H_1, \ldots, H_7\}$ a collection of 7 distinct hyperplanes H_i in \mathbb{P}^3 $i = 1, \ldots, 7$ with the property that any 3 of them meet in a point $P_{\mathcal{H},\sigma} = H_{\sigma_1} \cap H_{\sigma_2} \cap H_{\sigma_3}$, where $\sigma = \{\sigma_1, \sigma_2, \sigma_3\} \in B$. We get

X_{H,B} is a Steiner configuration consisting of 7 points in P³
 X_{H,G(2,2)}\B is a C-Steiner configuration consisting of

$$\binom{7}{3} - 7 = 28$$
 points in \mathbb{P}^3 .

Steiner configurations

> Elena Guardo

August 11-12.

э

A B M A B M

Monomial ideals and Graph Theory

- Given a graph G with vertices {x₁,..., x_v}, we associate the ideal I_G in k[x₁,..., x_v] generated by the quadratic monomials x_ix_j such that x_i is adjacent to x_j.
- From known results in the literature, ideals generated by squarefree monomials have a beautiful combinatorial interpretation in terms of simplicial complexes.

Steiner configurations

El en a Guardo

- Given a graph G with vertices {x₁,..., x_v}, we associate the ideal I_G in k[x₁,..., x_v] generated by the quadratic monomials x_ix_j such that x_i is adjacent to x_j.
- From known results in the literature, ideals generated by squarefree monomials have a beautiful combinatorial interpretation in terms of simplicial complexes.

Simplicial Complexes and Matroids

Definition

A simplicial complex Δ over a set of vertices $V = \{x_1, \dots, x_v\}$ is a collection of subsets of V satisfying the following two conditions:

2 if
$$F \in \Delta$$
 and $G \subset F$, then $G \in \Delta$.

An element F of Δ is called a face, and the dimension of a face F of Δ is |F| - 1, where |F| is the number of vertices of F.

Steiner configurations

El en a Guardo

э

- The Alexander dual of a simplicial complex Δ on
 V = {x₁,..., x_ν} is the simplicial complex Δ[∨] on V with faces V \ σ, where σ ∉ Δ.
- The Stanley-Reisner ideal of Δ is the ideal $I_{\Delta} := (x^{\sigma} \mid \sigma \notin \Delta)$ of $R = k[x_1, \dots, x_{\nu}]$, where $x^{\sigma} = \prod_{i \in \sigma} x_i$.
- It is well known that the Stanley-Reisner ideals are squarefree monomial ideals. The quotient ring k[Δ] := R/I_Δ is the Stanley-Reisner ring of the simplicial complex Δ.

Elena Guardo

- The Alexander dual of a simplicial complex Δ on
 V = {x₁,..., x_ν} is the simplicial complex Δ[∨] on V with faces V \ σ, where σ ∉ Δ.
- The Stanley-Reisner ideal of Δ is the ideal $I_{\Delta} := (x^{\sigma} \mid \sigma \notin \Delta)$ of $R = k[x_1, \dots, x_{\nu}]$, where $x^{\sigma} = \prod_{i \in \sigma} x_i$.
- It is well known that the Stanley-Reisner ideals are squarefree monomial ideals. The quotient ring k[Δ] := R/I_Δ is the Stanley-Reisner ring of the simplicial complex Δ.

Elena Guardo

- The Alexander dual of a simplicial complex Δ on
 V = {x₁,..., x_ν} is the simplicial complex Δ[∨] on V with faces V \ σ, where σ ∉ Δ.
- The Stanley-Reisner ideal of Δ is the ideal $I_{\Delta} := (x^{\sigma} \mid \sigma \notin \Delta)$ of $R = k[x_1, \dots, x_{\nu}]$, where $x^{\sigma} = \prod_{i \in \sigma} x_i$.
- It is well known that the Stanley-Reisner ideals are squarefree monomial ideals. The quotient ring k[Δ] := R/I_Δ is the Stanley-Reisner ring of the simplicial complex Δ.

Elena Guardo

August 11-12

If V is a set v points, we denote by $k[V] := k[x_1, \ldots, x_v]$ the standard graded polynomial ring in v variables. Given a *n*-subset of V, $\sigma := \{i_1, i_2, \ldots, i_n\} \subseteq V$, we will write

$$\mathfrak{p}_{\sigma} := (x_{i_1}, x_{i_2}, \ldots, x_{i_n}) \subseteq k[V]$$

for the prime ideal generated by the variables indexed by σ , and

$$M_{\sigma} := x_{i_1} x_{i_2} \cdots x_{i_n} \in k[V]$$

for the monomial given by the product of the variables indexed by σ .

Steiner configurations

> Elena Guardo

Let $n \le v$ be positive integers, and V a set of v points; recall that $C_{(n,v)}$ is the set containing all the *n*-subsets of V.

Definition

If $T \subset C_{(n,v)}$, we define two ideals

$$I_{\mathcal{T}} := (M_{\sigma} \mid \sigma \in \mathcal{T}) \subseteq k[V]$$

and

$$J_{\mathcal{T}} := \bigcap_{\sigma \in \mathcal{T}} \mathfrak{p}_{\sigma} \subseteq k[V]$$

called the *face ideal* of T and the *cover ideal* of T, respectively.

Steiner configurations

> El en a Guardo

El en a Guardo

August 11-12.

Since J_T is a squarefree monomial ideal, the *m*-th symbolic power of J_T (Theorem 3.7 in Cooper-Ha) is

$$J_T^{(m)} := \bigcap_{\sigma \in T} \mathfrak{p}_{\sigma}^m.$$

P

Definition

A matroid Δ on a vertex set $\{1, \ldots, v\}$ is a non-empty collection of subsets of $\{1, \ldots, v\}$ that is closed under inclusion and satisfies the following property: If F and G are Δ and |F| > |G| then there exists $i \in F \setminus G$ such that $G \cup \{i\} \in \Delta$.

Equivalently, a matroid is a simplicial complex Δ such that, for every subset $F \subset \{1, \ldots, \nu\}$, the restriction $\Delta | F = \{G \in \Delta | G \subset F\}$ is pure, that is, all its facets have the same dimension.

Steiner configurations

Elena Guardo

Varbaro and Minh - Trung have independently shown

Theorem

Let Δ be a simplicial complex on $\{1, \ldots, v\}$. Then $k[V]/I_{\Delta}^{(m)}$ is Cohen-Macaulay for each $m \geq 1$ if and only if Δ is a matroid.

Steiner configurations

> Elena Guardo

Main results

Theorem

Let (V, B) be a Steiner system of type S(t, n, v). Then Δ_C is a matroid.

Theorem

Let (V, B) be a Steiner system of type S(t, n, v). Then $k[V]/I_{\Delta c}^{(m)}$ is Cohen-Macaulay for each $m \ge 1$.

Steiner configurations

> Elena Guardo

August 11-12.

A B M A B M

Main result for symbolic powers

Theorem

 $I_{X_{\mathcal{H},C}}^{(m)} \subseteq k[\mathbb{P}^n]$ and $I_{\Delta_C}^{(m)} \subseteq k[V]$ share the same homological invariants.

The Cohen-Macaulay property of $k[V]/I_{\Delta_C}^{(m)}$ also allows us to look at $I_{X_{\mathcal{H},C}}^{(m)}$ as a proper hyperplane section of $I_{\Delta_C}^{(m)}$. This construction is quite standard but is very useful.

Steiner configurations

Elena Guardo

August 11-12.

Using the previous results, we have the following theorem:

Theorem

Let
$$(V, B)$$
 be a Steiner system of type $S(t, n, v)$. Then
i) $\alpha(I_{X_C}) = v - n$;
ii) $\alpha(I_{X_C}^{(q)}) = v - n + q$, for $2 \le q < n$;
iii) $\alpha(I_{X_C}^{(m)}) = \alpha(I_{X_C}^{(q)}) + pv$, where $m = pn + q$ and $0 \le q < and \alpha(I_{X_C}^{(n)}) = \alpha(I_{X_C}^{(0)}) + v = v$.

Steiner configurations

> El en a Guardo

August 11-12

п

Elena Guardo

August 11-12

34 / 46

Corollary

If (V, B) is a Steiner system of type S(t, n, v), then the Waldschmidt constant of I_{X_C} is

$$\widehat{\alpha}(I_{X_C}) = \frac{v}{n}.$$

Elena Guardo (UniCatania)

Proposition

If (V, B) is a Steiner system S(t, n, v), then the h-vector of X_C is

$$h_{X_C} = \left(1, n, \binom{n+1}{n-1}, \cdots, \binom{\nu-2}{n-1}, \binom{\nu-1}{n-1} - |B|\right).$$

The regularity of I_{X_C} is an easy consequence of the previous result:

Corollary

$$\operatorname{reg}(I_{X_C}) = \alpha(I_{X_C}) + 1 = v - n + 1.$$

Elena Guardo (UniCatania)

Elena Guardo

August 11-12.

35 / 46

Resurgence

Corollary

Let $I \subseteq k[x_0, ..., x_n]$ be the ideal defining complement of a Steiner Configuration of points in \mathbb{P}_k^n . Then, $\rho(I) < n$.

Steiner configurations

> El en a Guardo

Elena Guardo (UniCatania)

Steiner configurations

A B M A B M

Containment

Theorem

[Ballico, Favacchio, -, Milazzo, Thomas] Let $I \subseteq k[x_0, \ldots, x_n]$ be the ideal defining complement of a Steiner Configuration of points in \mathbb{P}_k^n . Then I satisfies

- Stable Harbourne-Huneke Conjecture;
- **2** Stable Harbourne Conjecture.

Steiner configurations

Elena Guardo

Application to coding theory

- There are several ways to compute the minimum distance. One of them comes from linear algebra.
- Let k be any field and X = {P₁,..., P_r} ⊆ ℙⁿ a not degenerate finite set of reduced points. The linear code associated to X denoted by C(X) is the image of the injective linear map φ : kⁿ⁺¹ → k^r.

Steiner configurations

El en a Guardo

- There are several ways to compute the minimum distance. One of them comes from linear algebra.
- Let k be any field and X = {P₁,..., P_r} ⊆ ℙⁿ a not degenerate finite set of reduced points. The linear code associated to X denoted by C(X) is the image of the injective linear map φ : kⁿ⁺¹ → k^r.

Elena Guardo

Parameters of a linear code

- We are interested in three parameters [|X|, k_X, d_X] that we use to evaluate the goodness of a linear code.
- The first number |X| is the cardinality of X. The number k_X is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to φ.
- The number d_X denotes the minimal distance of C(X), that is the minimum of the Hamming distance of two elements in C(X).

Steiner configurations

Elena Guardo

- We are interested in three parameters [|X|, k_X, d_X] that we use to evaluate the goodness of a linear code.
- The first number |X| is the cardinality of X. The number k_X is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to φ.
- The number d_X denotes the minimal distance of C(X), that is the minimum of the Hamming distance of two elements in C(X).

El en a Guardo

- We are interested in three parameters [|X|, k_X, d_X] that we use to evaluate the goodness of a linear code.
- The first number |X| is the cardinality of X. The number k_X is the dimension of the code as k-linear vector space, that is the rank of the matrix associated to φ.
- The number d_X denotes the minimal distance of $\mathcal{C}(X)$, that is the minimum of the Hamming distance of two elements in $\mathcal{C}(X)$.

Elena Guardo

Given a set of points X = {P₁,..., P_r} ⊆ ℙⁿ, the linear code associated to X has generating matrix of type (n+1) × r

$$A(X) = [c_1 \ldots c_r]$$

where c_i are the coordinates of P_i .

- Assume that A(X) has no proportional columns is equivalent to say that the points P_i are distinct points in Pⁿ and n < r
- Then |X| = r, Rank(A(X)) = n + 1 and r − d_X is the maximum number of these points that fit in a hyperplane of Pⁿ.

Steiner configurations

Elena Guardo

Given a set of points X = {P₁,..., P_r} ⊆ ℙⁿ, the linear code associated to X has generating matrix of type (n+1) × r

$$A(X) = [c_1 \ldots c_r]$$

where c_i are the coordinates of P_i .

- Assume that A(X) has no proportional columns is equivalent to say that the points P_i are distinct points in Pⁿ and n < r

- Then |X| = r, Rank(A(X)) = n + 1 and r − d_X is the maximum number of these points that fit in a hyperplane of Pⁿ.

Steiner configurations

Elena Guardo

Given a set of points X = {P₁,..., P_r} ⊆ ℙⁿ, the linear code associated to X has generating matrix of type (n+1) × r

$$A(X) = [c_1 \ldots c_r]$$

where c_i are the coordinates of P_i .

- Assume that A(X) has no proportional columns is equivalent to say that the points P_i are distinct points in Pⁿ and n < r

- Then |X| = r, Rank(A(X)) = n + 1 and r − d_X is the maximum number of these points that fit in a hyperplane of Pⁿ.

Steiner configurations

> Elena Guardo

Geometric interpretation of d_X

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_X is also the minimum number such that r - d_X columns in A(X) span an n-dimensional space.
- The generating matrix A(X) of an [|X|, n + 1, d_X]-linear code C naturally determines a matroid M(C).
- Denoted by hyp(X) the maximum number of points contained in some hyperplane, d_X has also geometrical interpretation, that is

$$d_X = |X| - hyp(X)$$

Steiner configurations

Elena Guardo

Geometric interpretation of d_X

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_X is also the minimum number such that r - d_X columns in A(X) span an n-dimensional space.
- The generating matrix A(X) of an [|X|, n + 1, d_X]-linear code C naturally determines a matroid M(C).
- Denoted by hyp(X) the maximum number of points contained in some hyperplane, d_X has also geometrical interpretation, that is

$$d_X = |X| - hyp(X)$$

Steiner configurations

Elena Guardo

Geometric interpretation of d_X

- From Toheneanu and Van Tuyl's papers we know that the minimum distance d_X is also the minimum number such that r - d_X columns in A(X) span an n-dimensional space.
- The generating matrix A(X) of an [|X|, n + 1, d_X]-linear code C naturally determines a matroid M(C).
- Denoted by hyp(X) the maximum number of points contained in some hyperplane, d_X has also geometrical interpretation, that is

$$d_X = |X| - hyp(X)$$

Steiner configurations

Elena Guardo

Theorem

Let (V, B) be a Steiner system S(t, n, v) with |V| = v. Then the parameters of the linear code defined by a Steiner configuration of points X_B are $[|B|, n + 1, d_{X_B}]$ where

$$d_{X_B} = rac{\binom{v}{t}}{\binom{n}{t}} - rac{\binom{v-1}{t-1}}{\binom{n-1}{t-1}}.$$

Steiner configurations

Elena Guardo

August 11-12.

With the above results, we have

Theorem

Let (V, B) be a Steiner system S(t, n, v) with |V| = v. Then the parameters of the linear code defined by a Complement of a Steiner configuration of points X_C are $\left[\binom{v}{n} - |B|, n+1, d_{X_C}\right]$ where

$$d_{X_C} = \binom{v}{n} - \frac{\binom{v}{t}}{\binom{n}{t}} - \binom{v-1}{n-1} + \frac{\binom{v-1}{t-1}}{\binom{n-1}{t-1}}.$$

Steiner configurations

Elena Guardo

August 11-12.

Elena Guardo (UniCatania)

Computing the linear code associated to the Steiner system S(2, 3, 7).

Consider the Steiner system S(2,3,7). For i = 1, ..., 7, let $H_i \subseteq \mathbb{P}^3$ be the hyperplane defined by

 $\ell_i := x + 2^i y + 3^i z + 5^i w$

$A(X_{\mathcal{H},B}) :=$	/ -15	-1983	-438045	-350	-639000	9315	104625
	20	1576	269060	160	240075		-25875
	-10	-418	-34230	-35	-37550	470	4250
	\ 1	17	523	1	666	-9	-99

The parameters of the code $C(X_{\mathcal{H},B})$ are [7,4,4] and the parameters of the code $C(X_{\mathcal{H},C_{(3,7)}\setminus B})$ are [28,4,16].

Steiner configurations

> Elena Guardo

- Ballico E., Favacchio G., Guardo E., Milazzo L. Steiner systems and configurations of points Designs, Codes, and Cryptography, 89(2), pp. 199–219, 2021
- Ballico, E., Favacchio, G., Guardo, E., Milazzo, L., Thomas, A.C.
 Steiner configurations ideals: Containment and colouring *Mathematics, 9(3), pp. 1–15, 210*, 2021

Elena Guardo

> Elena Guardo

August 11-12,

Thank you

Elena Guardo (UniCatania)

Steiner configurations

46 / 46

イロト イヨト イヨト イヨト