ON SYMBOLIC POWERS OF IDEALS

Mike Janssen Dordt University August 11, 2023

April 11, 2013

Exploring Symbolic Powers

Definition

Let *I* be an ideal in a Noetherian ring *R*, and $m \ge 1$. Then the *m*-th symbolic power of *I*, denoted $I^{(m)}$, is the ideal

$$I^{(m)} = \bigcap_{P \in Ass(I)} (I^m R_P \cap R),$$

where R_P denotes the localization of R at the prime ideal P.

Definition

Let *I* be an ideal in a Noetherian ring *R*, and $m \ge 1$. Then the *m*-th symbolic power of *I*, denoted $I^{(m)}$, is the ideal

$$I^{(m)} = \bigcap_{P \in Ass(I)} (I^m R_P \cap R),$$

where R_P denotes the localization of R at the prime ideal P.

Theorem Let I be a radical ideal in a Noetherian ring R with minimal primes $P_1, P_2, ..., P_s$. Then $I = P_1 \cap P_2 \cap \cdots \cap P_s$, and

$$I^{(m)} = P_1^{(m)} \cap P_2^{(m)} \cap \cdots \cap P_s^{(m)}.$$

Let R be Noetherian and suppose $I \subseteq R$ is an ideal generated by a regular sequence. Then $I^{(m)} = I^m$ for all $m \ge 1$.

Let R be Noetherian and suppose $I \subseteq R$ is an ideal generated by a regular sequence. Then $I^{(m)} = I^m$ for all $m \ge 1$.

Example

Let $R = k[\mathbb{P}^2] = k[x, y, z]$ and $p \in \mathbb{P}^2$. Then I = I(p) can be taken to be I = (x, y), and

$$l^{(m)} = (x, y)^{(m)} = (x, y)^m.$$

Theorem (Zariski, Nagata) Let k be a perfect field, $R = k[x_0, x_1, ..., x_N]$, $I \subseteq R$ a radical ideal, and $X \subseteq \mathbb{P}^N$ the variety corresponding to I. Then $I^{(m)}$ is the ideal generated by forms vanishing to order at least m on X.

- Ideals of (fat) points
- Squarefree monomial ideals

The Containment Problem and Ideals of Points

Question Given a nontrivial homogeneous ideal $I \subseteq k[x_0, ..., x_n]$, how do $I^{(m)}$ and I^r compare?

Let I be an ideal in a Noetherian ring R. Then:

• $I^m \subseteq I^r$ if and only if $m \ge r$.

Let I be an ideal in a Noetherian ring R. Then:

- $I^m \subseteq I^r$ if and only if $m \ge r$.
- $I^{(m)} \subseteq I^{(r)}$ if and only if $m \ge r$.

Let I be an ideal in a Noetherian ring R. Then:

- $I^m \subseteq I^r$ if and only if $m \ge r$.
- $I^{(m)} \subseteq I^{(r)}$ if and only if $m \ge r$.
- if R is a domain, $I^m \subseteq I^{(r)}$ if and only if $m \ge r$.

Let I be an ideal in a Noetherian ring R. Then:

- $I^m \subseteq I^r$ if and only if $m \ge r$.
- $I^{(m)} \subseteq I^{(r)}$ if and only if $m \ge r$.
- if R is a domain, $I^m \subseteq I^{(r)}$ if and only if $m \ge r$.
- $I^{(m)} \subseteq I^r$ implies $m \ge r$, but the converse need not hold.

Containment Problem: Given a nontrivial homogeneous ideal $I \subseteq k[x_0, x_1, x_2, ..., x_N]$, for which m, r do we have $I^{(m)} \subseteq I^r$?

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021)) Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \ge er$, $I^{(m)} \subseteq I^r$.

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021)) Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \ge er$, $I^{(m)} \subseteq I^r$.

Corollary

Let I be a nontrivial homogeneous ideal in $k[\mathbb{P}^N]$. If $m \ge Nr$, then $I^{(m)} \subseteq I^r$.

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021)) Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \ge er$, $I^{(m)} \subseteq I^r$.

Corollary

Let I be a nontrivial homogeneous ideal in $k[\mathbb{P}^N]$. If $m \ge Nr$, then $I^{(m)} \subseteq I^r$.

Question (Huneke)

When I = I(S) is the ideal defining any finite set S of points in \mathbb{P}^2 , is it true that $I^{(3)} \subseteq I^2$?

Definition If $p_i \in \mathbb{P}^N$ and $Z = m_1p_1 + m_2p_2 + \cdots + m_sp_s$ is a **fat points subscheme** with I = I(Z), then

 $I(Z) = I(p_1)^{m_1} \cap I(p_2)^{m_2} \cap \cdots \cap I(p_s)^{m_s}.$

Definition If $p_i \in \mathbb{P}^N$ and $Z = m_1p_1 + m_2p_2 + \cdots + m_sp_s$ is a **fat points subscheme** with I = I(Z), then

$$I(Z) = I(p_1)^{m_1} \cap I(p_2)^{m_2} \cap \cdots \cap I(p_s)^{m_s}.$$

The symbolic powers of I = I(Z) are therefore

$$I^{(m)} = I(mZ) = I(p_1)^{mm_1} \cap I(p_2)^{mm_2} \cap \cdots \cap I(p_s)^{mm_s}$$

• Answered Huneke's question in the affirmative for I(S) when S is a finite set of generic points in \mathbb{P}^2 .

- Answered Huneke's question in the affirmative for I(S) when S is a finite set of generic points in \mathbb{P}^2 .
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m/r for which $I^{(m)} \not\subseteq I^r$, and calculated ρ for ideals of various point configurations in \mathbb{P}^2 .

- Answered Huneke's question in the affirmative for I(S) when S is a finite set of generic points in \mathbb{P}^2 .
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m/r for which $I^{(m)} \not\subseteq I^r$, and calculated ρ for ideals of various point configurations in \mathbb{P}^2 .
- Obtained bounds on $\rho(I(Z))$ in terms of other invariants of I(Z).

- Answered Huneke's question in the affirmative for I(S) when S is a finite set of generic points in \mathbb{P}^2 .
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m/r for which $I^{(m)} \not\subseteq I^r$, and calculated ρ for ideals of various point configurations in \mathbb{P}^2 .
- Obtained bounds on $\rho(I(Z))$ in terms of other invariants of I(Z).
- Used these bounds to establish the sharpness of the uniform bound.

Assume the points p_1, \ldots, p_n lie on a smooth conic curve. Let I = I(Z) where $Z = p_1 + \cdots + p_n$. Let m, r > 0.

- 1. If n is even or n = 1, then $I^{(m)} \subseteq I^r$ if and only if $m \ge r$. In particular, $\rho(I) = 1$.
- 2. If n > 1 is odd, then $l^{(m)} \subseteq l^r$ if and only if $(n + 1)r 1 \le nm$; in particular, $\rho(l) = (n + 1)/n$.

Assume the points p_1, \ldots, p_n lie on a smooth conic curve. Let I = I(Z) where $Z = p_1 + \cdots + p_n$. Let m, r > 0.

- 1. If n is even or n = 1, then $I^{(m)} \subseteq I^r$ if and only if $m \ge r$. In particular, $\rho(I) = 1$.
- 2. If n > 1 is odd, then $I^{(m)} \subseteq I^r$ if and only if $(n + 1)r 1 \le nm$; in particular, $\rho(I) = (n + 1)/n$.

Conjecture (B. Harbourne) Let $I \subseteq k[\mathbb{P}^N]$ be a homogeneous ideal. Then $I^{(m)} \subseteq I^r$ if $m \ge rN - (N - 1)$. Squarefree Monomial Ideals

Oberwolfach Mini-Workshop: Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems (2015)

Definition

Let $I \subseteq k[x_0, ..., x_N]$ be homogeneous. The initial degree of *I*, denoted $\alpha(I)$, is the least degree of a nonzero $f \in I$.

Definition

Let $I \subseteq k[x_0, ..., x_N]$ be homogeneous. The initial degree of *I*, denoted $\alpha(I)$, is the least degree of a nonzero $f \in I$.

Definition

The Waldschmidt constant, denoted $\widehat{\alpha}(I)$, is the limit

$$\widehat{\alpha}(l) := \lim_{m \to \infty} \frac{\alpha(l^{(m)})}{m}$$

Example Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example

Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example Given $I = (x, y) \cap (x, z) \cap (y, z) \subseteq k[x, y, z]$:

 $\alpha(I)/1 = 2/1$

Example

Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example Given $I = (x, y) \cap (x, z) \cap (y, z) \subseteq k[x, y, z]$:

 $\alpha(I)/1 = 2/1$ $\alpha(I^{(2)})/2 = 3/2$

Example

Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example Given $I = (x, y) \cap (x, z) \cap (y, z) \subseteq k[x, y, z]$:

> $\alpha(l)/1 = 2/1$ $\alpha(l^{(2)})/2 = 3/2$ $\alpha(l^{(3)})/3 = 5/3$

Example

Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example Given $I = (x, y) \cap (x, z) \cap (y, z) \subseteq k[x, y, z]$:

$$\alpha(l)/1 = 2/1$$

$$\alpha(l^{(2)})/2 = 3/2$$

$$\alpha(l^{(3)})/3 = 5/3$$

$$\alpha(l^{(4)})/4 = 6/4$$

:

Example

Let R = k[x, y, z] and set $I = (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$. It turns out that

$$I^{(m)} = (x, y)^m \cap (x, z)^m \cap (y, z)^m.$$

Example Given $I = (x, y) \cap (x, z) \cap (y, z) \subseteq k[x, y, z]$:

$$\alpha(l)/1 = 2/1$$

$$\alpha(l^{(2)})/2 = 3/2$$

$$\alpha(l^{(3)})/3 = 5/3$$

$$\alpha(l^{(4)})/4 = 6/4$$

In fact, $\widehat{\alpha}(I) = \frac{3}{2}$.

Let I be a squarefree monomial ideal in $k[x_1, \ldots, x_N]$.

- 1. There exist unique prime ideals of the form $P_i = (x_{i,1}, \dots, x_{i,t_i})$ such that
 - $I=P_1\cap\cdots\cap P_s.$

Let I be a squarefree monomial ideal in $k[x_1, \ldots, x_N]$.

- 1. There exist unique prime ideals of the form $P_i = (x_{i,1}, \dots, x_{i,t_i})$ such that $I = P_1 \cap \dots \cap P_s$.
- 2. With the P_i 's as above, we have

$$I^{(m)} = P_1^m \cap \cdots \cap P_s^m.$$

Let I be a squarefree monomial ideal in $k[x_1, \ldots, x_N]$.

- 1. There exist unique prime ideals of the form $P_i = (x_{i,1}, \dots, x_{i,t_i})$ such that $I = P_1 \cap \dots \cap P_s$.
- 2. With the P_i 's as above, we have

$$I^{(m)} = P_1^m \cap \cdots \cap P_s^m.$$

3. For all $m \ge 1$,

$$\alpha(I^{(m)}) = \min\{a_1 + \cdots + a_N \mid x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}\}.$$

Let I be a squarefree monomial ideal in $k[x_1, \ldots, x_N]$.

- 1. There exist unique prime ideals of the form $P_i = (x_{i,1}, \dots, x_{i,t_i})$ such that $I = P_1 \cap \dots \cap P_s$.
- 2. With the P_i 's as above, we have

$$I^{(m)} = P_1^m \cap \cdots \cap P_s^m.$$

3. For all $m \ge 1$,

$$\alpha(l^{(m)}) = \min\{a_1 + \cdots + a_N \mid x_1^{a_1} \cdots x_N^{a_N} \in l^{(m)}\}.$$

We therefore have $x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}$ if and only if $a_{i,1} + \cdots + a_{i,t_i} \ge m$ for $i = 1, \dots, s$.

Example

Let
$$I = (x_1x_3x_5, x_2x_3x_4, x_1x_2x_4x_5, x_3x_4x_5) \subseteq k[x_1, x_2, \dots, x_5]$$
. Then

$$I^{(m)} = (x_1, x_3)^m \cap (x_2, x_3)^m \cap (x_1, x_4)^m \cap (x_3, x_4)^m \\ \cap (x_2, x_5)^m \cap (x_3, x_5)^m \cap (x_4, x_5)^m.$$

Example

Let
$$I = (x_1x_3x_5, x_2x_3x_4, x_1x_2x_4x_5, x_3x_4x_5) \subseteq k[x_1, x_2, \dots, x_5]$$
. Then

•

$$I^{(m)} = (x_1, x_3)^m \cap (x_2, x_3)^m \cap (x_1, x_4)^m \cap (x_3, x_4)^m \\ \cap (x_2, x_5)^m \cap (x_3, x_5)^m \cap (x_4, x_5)^m.$$

Determining if $x_1^{a_1}x_2^{a_2}x_3^{a_3}x_4^{a_4}x_5^{a_5} \in I^{(m)}$ is equivalent to determining if the following system of inequalities are satisfied:

$$a_{1} + a_{3} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{1}, x_{3})^{m}$$

$$a_{2} + a_{3} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{2}, x_{3})^{m}$$

$$a_{1} + a_{4} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{1}, x_{4})^{m}$$

Example

Let
$$I = (x_1x_3x_5, x_2x_3x_4, x_1x_2x_4x_5, x_3x_4x_5) \subseteq k[x_1, x_2, \dots, x_5]$$
. Then

$$I^{(m)} = (x_1, x_3)^m \cap (x_2, x_3)^m \cap (x_1, x_4)^m \cap (x_3, x_4)^m \\ \cap (x_2, x_5)^m \cap (x_3, x_5)^m \cap (x_4, x_5)^m.$$

Determining if $x_1^{a_1}x_2^{a_2}x_3^{a_3}x_4^{a_4}x_5^{a_5} \in I^{(m)}$ is equivalent to determining if the following system of inequalities are satisfied:

$$a_{1} + a_{3} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{1}, x_{3})^{m}$$

$$a_{2} + a_{3} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{2}, x_{3})^{m}$$

$$a_{1} + a_{4} \ge m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in (x_{1}, x_{4})^{m}$$

To calculate $\alpha(I^{(m)})$, we wish to minimize $a_1 + a_2 + a_3 + a_4 + a_5$ subject to the above constraints.

A LINEAR PROGRAM FOR $\widehat{\alpha}$

Theorem (Bocci et al. (2016))

Let $I \subseteq k[x_1, ..., x_N]$ be a squarefree monomial ideal with minimal primary decomposition $I = P_1 \cap \cdots \cap P_s$ with $P_i = (x_{i,1}, ..., x_{i,t_i})$ for i = 1, ..., s. Let A be the $s \times n$ matrix where

$$A_{i,j} = \begin{cases} 1 & \text{if } x_j \in P_i \\ 0 & \text{if } x_j \notin P_i. \end{cases}$$

Consider the following linear program (LP):

minimize **1**^T**y**

subject to $Ay \ge 1$ and $y \ge 0$

and suppose \mathbf{y}^* is a feasible solution that realizes the optimal value. Then

$$\widehat{\alpha}(l) = \mathbf{1}^T \mathbf{y}^*.$$

That is, $\widehat{\alpha}(I)$ is the optimal value of the LP.

Application to Edge Ideals

Definition

Let G be a (finite, simple) graph with vertices $x_1, x_2, ..., x_N$. The **edge ideal** I(G) is the ideal in $k[x_1, ..., x_N]$ generated by the set

 $\{x_i x_j \mid \{x_i, x_j\} \in E(G)\}.$

Definition

Let G be a (finite, simple) graph with vertices $x_1, x_2, ..., x_N$. The **edge ideal** I(G) is the ideal in $k[x_1, ..., x_N]$ generated by the set

 $\{x_i x_j \mid \{x_i, x_j\} \in E(G)\}.$

When I = I(G), the minimal primes of I are generated by the variables corresponding to the minimal vertex covers of G.

Minimal vertex covers:

•
$$W_1 = \{x_1, x_3, x_5\}$$

Minimal vertex covers:

•
$$W_1 = \{x_1, x_3, x_5\}$$

•
$$W_2 = \{x_1, x_3, x_4\}$$

Minimal vertex covers:

- $W_1 = \{x_1, x_3, x_5\}$
- $W_2 = \{x_1, x_3, x_4\}$
- $W_3 = \{x_1, x_2, x_4\}$

- $W_1 = \{x_1, x_3, x_5\}$
- $W_2 = \{x_1, x_3, x_4\}$
- $W_3 = \{x_1, x_2, x_4\}$
- $W_4 = \{x_2, x_3, x_5\}$

- $W_1 = \{x_1, x_3, x_5\}$
- $W_2 = \{x_1, x_3, x_4\}$
- $W_3 = \{x_1, x_2, x_4\}$
- $W_4 = \{x_2, x_3, x_5\}$

•
$$W_5 = \{x_2, x_4, x_5\}$$

Minimal vertex covers:

•
$$W_1 = \{x_1, x_3, x_5\}$$

•
$$W_2 = \{x_1, x_3, x_4\}$$

•
$$W_3 = \{x_1, x_2, x_4\}$$

•
$$W_4 = \{x_2, x_3, x_5\}$$

•
$$W_5 = \{x_2, x_4, x_5\}$$

Thus,

$\widehat{\alpha}$ FOR FAMILIES OF EDGE IDEALS

Theorem (Bocci et al. (2016)) Let G be a finite simple graph with edge ideal I(G). Then

$$\widehat{\alpha}(I(G)) = \frac{\chi_f(G)}{\chi_f(G) - 1},$$

where $\chi_f(G)$ denotes the fractional chromatic number of G.

Theorem (Bocci et al. (2016))

Let G be a finite simple graph with edge ideal I(G). Then

$$\widehat{\alpha}(I(G)) = \frac{\chi_f(G)}{\chi_f(G) - 1},$$

where $\chi_f(G)$ denotes the fractional chromatic number of G.

Theorem (Bocci et al. (2016)) Let G be a nonempty graph.

1. If
$$\chi(G) = \omega(G)$$
, then $\widehat{\alpha}(I(G)) = \frac{\chi(G)}{\chi(G)-1}$

- 2. If G is k-partite, then $\widehat{\alpha}(I(G)) \ge \frac{k}{k-1}$. When G is complete k-partite, $\widehat{\alpha}(I(G)) = \frac{k}{k-1}$.
- 3. If G is bipartite, $\widehat{\alpha}(I(G)) = 2$.

4. If
$$G = C_{2n+1}$$
 is an odd cycle, then $\hat{\alpha}(I(C_{2n+1})) = \frac{2n+1}{n+1}$.
5. If $G = C_{2n+1}^c$, then $\hat{\alpha}(I(C_{2n+1}^c)) = \frac{2n+1}{2n-1}$.

Theorem (J–, Kamp, and Vander Woude (2019)) Let I be the edge ideal of an odd cycle on 2n + 1 vertices. Then:

1. $I^{(m)} = I^m$ for $1 \le m \le n$.

Theorem (J–, Kamp, and Vander Woude (2019)) Let I be the edge ideal of an odd cycle on 2n + 1 vertices. Then:

1.
$$I^{(m)} = I^m$$
 for $1 \le m \le n$.
2. $I^{(n+1)} = I^{n+1} + (x_1 x_2 \cdots x_{2n+1})$.

Theorem (J–, Kamp, and Vander Woude (2019)) Let I be the edge ideal of an odd cycle on 2n + 1 vertices. Then:

1.
$$I^{(m)} = I^m$$
 for $1 \le m \le n$.
2. $I^{(n+1)} = I^{n+1} + (x_1 x_2 \cdots x_{2n+1})$.
3. $\rho(I) = \frac{2n+2}{2n+1}$.

RESOURCES

• Symbolic Powers of Ideals (2018), by Dao et al.

- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)

- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)
- A Beginner's Guide to Edge and Cover Ideals (2013) by Adam Van Tuyl

- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)
- A Beginner's Guide to Edge and Cover Ideals (2013) by Adam Van Tuyl

Thanks!