ON SYMBOLIC POWERS OF IDEALS

Mike Janssen
Dordt University
August 11, 2023

April 11, 2013

Exploring Symbolic Powers

GENERAL DEFINITION

Definition

Let I be an ideal in a Noetherian ring R, and $m \geq 1$. Then the m-th symbolic power of I, denoted $I^{(m)}$, is the ideal

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{p} \cap R\right)
$$

where R_{P} denotes the localization of R at the prime ideal P.

GENERAL DEFINITION

Definition

Let I be an ideal in a Noetherian ring R, and $m \geq 1$. Then the m-th symbolic power of I, denoted $I^{(m)}$, is the ideal

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{p} \cap R\right)
$$

where R_{P} denotes the localization of R at the prime ideal P.

Theorem

Let I be a radical ideal in a Noetherian ring R with minimal primes $P_{1}, P_{2}, \ldots, P_{s}$. Then $I=P_{1} \cap P_{2} \cap \cdots \cap P_{\text {s }}$, and

$$
I^{(m)}=P_{1}^{(m)} \cap P_{2}^{(m)} \cap \cdots \cap P_{s}^{(m)}
$$

THEOREM AND AN EXAMPLE

Theorem
Let R be Noetherian and suppose $I \subseteq R$ is an ideal generated by a regular sequence. Then $I^{(m)}=I^{m}$ for all $m \geq 1$.

THEOREM AND AN EXAMPLE

Theorem
Let R be Noetherian and suppose $I \subseteq R$ is an ideal generated by a regular sequence. Then $I^{(m)}=I^{m}$ for all $m \geq 1$.

Example

Let $R=k\left[\mathbb{P}^{2}\right]=k[x, y, z]$ and $p \in \mathbb{P}^{2}$. Then $I=I(p)$ can be taken to be $I=(x, y)$, and

$$
I^{(m)}=(x, y)^{(m)}=(x, y)^{m}
$$

GEOMETRIC INTERPRETATION

Theorem (Zariski, Nagata)
Let k be a perfect field, $R=k\left[x_{0}, x_{1}, \ldots, x_{N}\right], I \subseteq R$ a radical ideal, and $X \subseteq \mathbb{P}^{N}$ the variety corresponding to I. Then $I^{(m)}$ is the ideal generated by forms vanishing to order at least m on X.

Example: Star Configuration in \mathbb{P}^{2}

TWO CONTEXTS

- Ideals of (fat) points
- Squarefree monomial ideals

The Containment Problem and Ideals of Points

OUR QUESTION (FIRST DRAFT)

Question
 Given a nontrivial homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$, how do $I^{(m)}$ and I^{r} compare?

COMPARING POWERS

Theorem
Let I be an ideal in a Noetherian ring R. Then:

- $I^{m} \subseteq I^{r}$ if and only if $m \geq r$.

COMPARING POWERS

Theorem
Let I be an ideal in a Noetherian ring R. Then:

- $I^{m} \subseteq I^{r}$ if and only if $m \geq r$.
- $।^{(m)} \subseteq I^{(r)}$ if and only if $m \geq r$.

COMPARING POWERS

Theorem
Let I be an ideal in a Noetherian ring R. Then:

- $I^{m} \subseteq I^{r}$ if and only if $m \geq r$.
- $।^{(m)} \subseteq I^{(r)}$ if and only if $m \geq r$.
- if R is a domain, $I^{m} \subseteq I^{(r)}$ if and only if $m \geq r$.

COMPARING POWERS

Theorem
Let I be an ideal in a Noetherian ring R. Then:

- $I^{m} \subseteq I^{r}$ if and only if $m \geq r$.
- $\prime^{(m)} \subseteq I^{(r)}$ if and only if $m \geq r$.
- if R is a domain, $I^{m} \subseteq I^{(r)}$ if and only if $m \geq r$.
- $I^{(m)} \subseteq I^{r}$ implies $m \geq r$, but the converse need not hold.

OUR (GENERAL) QUESTION (FINAL DRAFT)

Containment Problem: Given a nontrivial homogeneous ideal $I \subseteq k\left[x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right]$, for which m, r do we have $I^{(m)} \subseteq I^{r}$?

A UNIFORM BOUND

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021))

Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \geq e r$, $\prime^{(m)} \subseteq I^{r}$.

A UNIFORM BOUND

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021))

Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \geq e r$, $\prime^{(m)} \subseteq I^{r}$.

Corollary

Let I be a nontrivial homogeneous ideal in $k\left[\mathbb{P}^{N}\right]$. If $m \geq N r$, then $I^{(m)} \subseteq I^{r}$.

A UNIFORM BOUND

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021))

Let R be a regular ring and I a radical ideal in R of big height e. Then if $m \geq e r$, $l^{(m)} \subseteq I^{r}$.

Corollary

Let I be a nontrivial homogeneous ideal in $k\left[\mathbb{P}^{N}\right]$. If $m \geq N r$, then $I^{(m)} \subseteq I^{r}$.
Question (Huneke)
When $I=I(S)$ is the ideal defining any finite set S of points in \mathbb{P}^{2}, is it true that $I^{(3)} \subseteq 1^{2}$?

IDEALS OF POINTS

Definition

If $p_{i} \in \mathbb{P}^{N}$ and $Z=m_{1} p_{1}+m_{2} p_{2}+\cdots m_{s} p_{s}$ is a fat points subscheme with $I=I(Z)$, then

$$
I(Z)=I\left(p_{1}\right)^{m_{1}} \cap I\left(p_{2}\right)^{m_{2}} \cap \cdots \cap I\left(p_{s}\right)^{m_{s}}
$$

IDEALS OF POINTS

Definition

If $p_{i} \in \mathbb{P}^{N}$ and $Z=m_{1} p_{1}+m_{2} p_{2}+\cdots m_{s} p_{s}$ is a fat points subscheme with $I=I(Z)$, then

$$
I(Z)=I\left(p_{1}\right)^{m_{1}} \cap I\left(p_{2}\right)^{m_{2}} \cap \cdots \cap I\left(p_{s}\right)^{m_{s}} .
$$

The symbolic powers of $I=I(Z)$ are therefore

$$
I(m)=I(m Z)=I\left(p_{1}\right)^{m m_{1}} \cap I\left(p_{2}\right)^{m m_{2}} \cap \cdots \cap I\left(p_{s}\right)^{m m_{s}} .
$$

COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS (2010; WITH C. BOCCI)

- Answered Huneke's question in the affirmative for $I(S)$ when S is a finite set of generic points in \mathbb{P}^{2}.
- Answered Huneke's question in the affirmative for $I(S)$ when S is a finite set of generic points in \mathbb{P}^{2}.
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m / r for which $I^{(m)} \nsubseteq I^{r}$, and calculated ρ for ideals of various point configurations in \mathbb{P}^{2}.
- Answered Huneke's question in the affirmative for $I(S)$ when S is a finite set of generic points in \mathbb{P}^{2}.
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m / r for which $ر^{(m)} \nsubseteq I^{r}$, and calculated ρ for ideals of various point configurations in \mathbb{P}^{2}.
- Obtained bounds on $\rho(I(Z))$ in terms of other invariants of $I(Z)$.
- Answered Huneke's question in the affirmative for $I(S)$ when S is a finite set of generic points in \mathbb{P}^{2}.
- Introduced the resurgence, $\rho(I)$, the supremum of the ratios m / r for which $ر^{(m)} \nsubseteq I^{r}$, and calculated ρ for ideals of various point configurations in \mathbb{P}^{2}.
- Obtained bounds on $\rho(I(Z))$ in terms of other invariants of $I(Z)$.
- Used these bounds to establish the sharpness of the uniform bound.

THE RESURGENCE OF IDEALS OF POINTS AND THE CONTAINMENT PROBLEM (2010; WITH C. BOCCI)

Theorem

Assume the points p_{1}, \ldots, p_{n} lie on a smooth conic curve. Let $I=I(Z)$ where $Z=p_{1}+\cdots+p_{n}$. Let $m, r>0$.

1. If n is even or $n=1$, then $I^{(m)} \subseteq I^{r}$ if and only if $m \geq r$. In particular, $\rho(I)=1$.
2. If $n>1$ is odd, then $I^{(m)} \subseteq I^{r}$ if and only if $(n+1) r-1 \leq n m$; in particular, $\rho(I)=(n+1) / n$. WITH C. BOCCI)

Theorem

Assume the points p_{1}, \ldots, p_{n} lie on a smooth conic curve. Let $I=I(Z)$ where $Z=p_{1}+\cdots+p_{n}$. Let $m, r>0$.

1. If n is even or $n=1$, then $I^{(m)} \subseteq I^{r}$ if and only if $m \geq r$. In particular, $\rho(I)=1$.
2. If $n>1$ is odd, then $I^{(m)} \subseteq I^{r}$ if and only if $(n+1) r-1 \leq n m$; in particular, $\rho(I)=(n+1) / n$.

Conjecture (B. Harbourne)
Let $I \subseteq k\left[\mathbb{P}^{N}\right]$ be a homogeneous ideal. Then $I^{(m)} \subseteq I^{r}$ if $m \geq r N-(N-1)$.

Squarefree Monomial Ideals

Oberwolfach Mini-Workshop: Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems (2015)

TWO DEFINITIONS

Definition

Let $I \subseteq k\left[x_{0}, \ldots, x_{N}\right]$ be homogeneous. The initial degree of I, denoted $\alpha(I)$, is the least degree of a nonzero $f \in I$.

TWO DEFINITIONS

Definition

Let $I \subseteq k\left[x_{0}, \ldots, x_{N}\right]$ be homogeneous. The initial degree of I, denoted $\alpha(I)$, is the least degree of a nonzero $f \in I$.

Definition

The Waldschmidt constant, denoted $\widehat{\alpha}(I)$, is the limit

$$
\widehat{\alpha}(I):=\lim _{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m} .
$$

EXAMPLE

Example

Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
I^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

EXAMPLE

Example

Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
\prime^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

Example

Given $I=(x, y) \cap(x, z) \cap(y, z) \subseteq k[x, y, z]$:

$$
\alpha(I) / 1=2 / 1
$$

EXAMPLE

Example

Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
\prime^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

Example

Given $I=(x, y) \cap(x, z) \cap(y, z) \subseteq k[x, y, z]$:

$$
\begin{aligned}
\alpha(I) / 1 & =2 / 1 \\
\alpha\left(I^{(2)}\right) / 2 & =3 / 2
\end{aligned}
$$

EXAMPLE

Example

Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
\prime^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

Example

Given $I=(x, y) \cap(x, z) \cap(y, z) \subseteq k[x, y, z]$:

$$
\begin{aligned}
\alpha(I) / 1 & =2 / 1 \\
\alpha\left(I^{(2)}\right) / 2 & =3 / 2 \\
\alpha\left(I^{(3)}\right) / 3 & =5 / 3
\end{aligned}
$$

EXAMPLE

Example

Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
\prime^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

Example

Given $I=(x, y) \cap(x, z) \cap(y, z) \subseteq k[x, y, z]$:

$$
\begin{aligned}
\alpha(I) / 1 & =2 / 1 \\
\alpha\left(I^{(2)}\right) / 2 & =3 / 2 \\
\alpha\left(I^{(3)}\right) / 3 & =5 / 3 \\
\alpha\left(I^{(4)}\right) / 4 & =6 / 4
\end{aligned}
$$

EXAMPLE

Example
Let $R=k[x, y, z]$ and set $I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$. It turns out that

$$
\prime^{(m)}=(x, y)^{m} \cap(x, z)^{m} \cap(y, z)^{m} .
$$

Example

Given $I=(x, y) \cap(x, z) \cap(y, z) \subseteq k[x, y, z]$:

$$
\begin{aligned}
\alpha(I) / 1 & =2 / 1 \\
\alpha\left(I^{(2)}\right) / 2 & =3 / 2 \\
\alpha\left(I^{(3)}\right) / 3 & =5 / 3 \\
\alpha\left(I^{(4)}\right) / 4 & =6 / 4
\end{aligned}
$$

In fact, $\widehat{\alpha}(I)=\frac{3}{2}$.

SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS

Theorem

Let I be a squarefree monomial ideal in $k\left[x_{1}, \ldots, x_{N}\right]$.

1. There exist unique prime ideals of the form $P_{i}=\left(x_{i, 1}, \ldots, x_{i, t_{i}}\right)$ such that $I=P_{1} \cap \cdots \cap P_{s}$.

SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS

Theorem

Let I be a squarefree monomial ideal in $k\left[x_{1}, \ldots, x_{N}\right]$.

1. There exist unique prime ideals of the form $P_{i}=\left(x_{i, 1}, \ldots, x_{i, t_{i}}\right)$ such that $I=P_{1} \cap \cdots \cap P_{s}$.
2. With the P_{i} 's as above, we have

$$
I^{(m)}=P_{1}^{m} \cap \cdots \cap P_{s}^{m} .
$$

SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS

Theorem

Let I be a squarefree monomial ideal in $k\left[x_{1}, \ldots, x_{N}\right]$.

1. There exist unique prime ideals of the form $P_{i}=\left(x_{i, 1}, \ldots, x_{i, t_{i}}\right)$ such that $I=P_{1} \cap \cdots \cap P_{s}$.
2. With the P_{i} 's as above, we have

$$
I^{(m)}=P_{1}^{m} \cap \cdots \cap P_{s}^{m} .
$$

3. For all $m \geq 1$,

$$
\alpha\left(I^{(m)}\right)=\min \left\{a_{1}+\cdots+a_{N} \mid x_{1}^{a_{1}} \cdots x_{N}^{a_{N}} \in I^{(m)}\right\} .
$$

SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS

Theorem

Let I be a squarefree monomial ideal in $k\left[x_{1}, \ldots, x_{N}\right]$.

1. There exist unique prime ideals of the form $P_{i}=\left(x_{i, 1}, \ldots, x_{i, t_{i}}\right)$ such that $I=P_{1} \cap \cdots \cap P_{s}$.
2. With the P_{i} 's as above, we have

$$
I^{(m)}=P_{1}^{m} \cap \cdots \cap P_{s}^{m} .
$$

3. For all $m \geq 1$,

$$
\alpha\left(I^{(m)}\right)=\min \left\{a_{1}+\cdots+a_{N} \mid x_{1}^{a_{1}} \cdots x_{N}^{a_{N}} \in I^{(m)}\right\} .
$$

We therefore have $x_{1}^{a_{1}} \cdots x_{N}^{a_{N}} \in I^{(m)}$ if and only if $a_{i, 1}+\cdots+a_{i, t_{i}} \geq m$ for $i=1, \ldots, s$.

EXAMPLE

Example
Let $I=\left(x_{1} x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{1} x_{2} x_{4} x_{5}, x_{3} x_{4} x_{5}\right) \subseteq k\left[x_{1}, x_{2}, \ldots, x_{5}\right]$. Then

$$
\begin{aligned}
I^{(m)} & =\left(x_{1}, x_{3}\right)^{m} \cap\left(x_{2}, x_{3}\right)^{m} \cap\left(x_{1}, x_{4}\right)^{m} \cap\left(x_{3}, x_{4}\right)^{m} \\
& \cap\left(x_{2}, x_{5}\right)^{m} \cap\left(x_{3}, x_{5}\right)^{m} \cap\left(x_{4}, x_{5}\right)^{m} .
\end{aligned}
$$

EXAMPLE

Example

Let $I=\left(x_{1} x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{1} x_{2} x_{4} x_{5}, x_{3} x_{4} x_{5}\right) \subseteq k\left[x_{1}, x_{2}, \ldots, x_{5}\right]$. Then

$$
\begin{aligned}
I^{(m)} & =\left(x_{1}, x_{3}\right)^{m} \cap\left(x_{2}, x_{3}\right)^{m} \cap\left(x_{1}, x_{4}\right)^{m} \cap\left(x_{3}, x_{4}\right)^{m} \\
& \cap\left(x_{2}, x_{5}\right)^{m} \cap\left(x_{3}, x_{5}\right)^{m} \cap\left(x_{4}, x_{5}\right)^{m} .
\end{aligned}
$$

Determining if $x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in I^{(m)}$ is equivalent to determining if the following system of inequalities are satisfied:

$$
\begin{aligned}
& a_{1}+a_{3} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{1}, x_{3}\right)^{m} \\
& a_{2}+a_{3} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{2}, x_{3}\right)^{m} \\
& a_{1}+a_{4} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{1}, x_{4}\right)^{m}
\end{aligned}
$$

EXAMPLE

Example

Let $I=\left(x_{1} x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{1} x_{2} x_{4} x_{5}, x_{3} x_{4} x_{5}\right) \subseteq k\left[x_{1}, x_{2}, \ldots, x_{5}\right]$. Then

$$
\begin{aligned}
I^{(m)} & =\left(x_{1}, x_{3}\right)^{m} \cap\left(x_{2}, x_{3}\right)^{m} \cap\left(x_{1}, x_{4}\right)^{m} \cap\left(x_{3}, x_{4}\right)^{m} \\
& \cap\left(x_{2}, x_{5}\right)^{m} \cap\left(x_{3}, x_{5}\right)^{m} \cap\left(x_{4}, x_{5}\right)^{m} .
\end{aligned}
$$

Determining if $x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in I^{(m)}$ is equivalent to determining if the following system of inequalities are satisfied:

$$
\begin{aligned}
& a_{1}+a_{3} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{1}, x_{3}\right)^{m} \\
& a_{2}+a_{3} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{2}, x_{3}\right)^{m} \\
& a_{1}+a_{4} \geq m \leftrightarrow x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}} x_{5}^{a_{5}} \in\left(x_{1}, x_{4}\right)^{m}
\end{aligned}
$$

To calculate $\alpha\left(I^{(m)}\right)$, we wish to minimize $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$ subject to the above constraints.

A LINEAR PROGRAM FOR $\widehat{\alpha}$

Theorem (Bocci et al. (2016))
Let $I \subseteq k\left[x_{1}, \ldots, x_{N}\right]$ be a squarefree monomial ideal with minimal primary decomposition $I=P_{1} \cap \cdots \cap P_{s}$ with $P_{i}=\left(x_{i, 1}, \ldots, x_{i, t_{i}}\right)$ for $i=1, \ldots, s$. Let A be the $s \times n$ matrix where

$$
A_{i, j}= \begin{cases}1 & \text { if } x_{j} \in P_{i} \\ 0 & \text { if } x_{j} \notin P_{i}\end{cases}
$$

Consider the following linear program (LP):

$$
\begin{aligned}
& \operatorname{minimize} 1^{\top} \mathrm{y} \\
& \text { subject to } A \mathrm{y} \geq 1 \text { and } \mathrm{y} \geq 0
\end{aligned}
$$

and suppose y^{*} is a feasible solution that realizes the optimal value. Then

$$
\widehat{\alpha}(I)=1^{\top} y^{*} .
$$

That is, $\widehat{\alpha}(I)$ is the optimal value of the $L P$.

Application to Edge Ideals

INTRO TO EDGE IDEALS

Definition

Let G be a (finite, simple) graph with vertices $x_{1}, x_{2}, \ldots, x_{N}$. The edge ideal $I(G)$ is the ideal in $k\left[x_{1}, \ldots, x_{N}\right]$ generated by the set

$$
\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\} \in E(G)\right\}
$$

INTRO TO EDGE IDEALS

Definition

Let G be a (finite, simple) graph with vertices $x_{1}, x_{2}, \ldots, x_{N}$. The edge ideal I(G) is the ideal in $k\left[x_{1}, \ldots, x_{N}\right]$ generated by the set

$$
\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\} \in E(G)\right\}
$$

When $I=I(G)$, the minimal primes of I are generated by the variables corresponding to the minimal vertex covers of G.

$$
\&
$$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$
- $W_{2}=\left\{x_{1}, x_{3}, x_{4}\right\}$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$
- $W_{2}=\left\{x_{1}, x_{3}, x_{4}\right\}$
- $W_{3}=\left\{x_{1}, x_{2}, x_{4}\right\}$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$
- $W_{2}=\left\{x_{1}, x_{3}, x_{4}\right\}$
- $W_{3}=\left\{x_{1}, x_{2}, x_{4}\right\}$
- $W_{4}=\left\{x_{2}, x_{3}, x_{5}\right\}$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$
- $W_{2}=\left\{x_{1}, x_{3}, x_{4}\right\}$
- $W_{3}=\left\{x_{1}, x_{2}, x_{4}\right\}$
- $W_{4}=\left\{x_{2}, x_{3}, x_{5}\right\}$
- $W_{5}=\left\{x_{2}, x_{4}, x_{5}\right\}$

EXAMPLE: I($\left.C_{5}\right)$

Minimal vertex covers:

- $W_{1}=\left\{x_{1}, x_{3}, x_{5}\right\}$
- $W_{2}=\left\{x_{1}, x_{3}, x_{4}\right\}$
- $W_{3}=\left\{x_{1}, x_{2}, x_{4}\right\}$
- $W_{4}=\left\{x_{2}, x_{3}, x_{5}\right\}$
- $W_{5}=\left\{x_{2}, x_{4}, x_{5}\right\}$

Thus,

$$
\begin{aligned}
I\left(C_{5}\right)^{(m)} & =\left(x_{1}, x_{3}, x_{5}\right)^{m} \cap\left(x_{1}, x_{3}, x_{4}\right)^{m} \cap\left(x_{1}, x_{2}, x_{4}\right)^{m} \\
& \cap\left(x_{2}, x_{3}, x_{5}\right)^{m} \cap\left(x_{2}, x_{4}, x_{5}\right)^{m} .
\end{aligned}
$$

$\widehat{\alpha}$ FOR FAMILIES OF EDGE IDEALS

Theorem (Bocci et al. (2016))
Let G be a finite simple graph with edge ideal I(G). Then

$$
\widehat{\alpha}(I(G))=\frac{\chi_{f}(G)}{\chi_{f}(G)-1},
$$

where $\chi_{f}(G)$ denotes the fractional chromatic number of G.

$\widehat{\alpha}$ FOR FAMILIES OF EDGE IDEALS

Theorem (Bocci et al. (2016))
Let G be a finite simple graph with edge ideal I(G). Then

$$
\widehat{\alpha}(I(G))=\frac{\chi_{f}(G)}{\chi_{f}(G)-1},
$$

where $\chi_{f}(G)$ denotes the fractional chromatic number of G.
Theorem (Bocci et al. (2016))
Let G be a nonempty graph.

1. If $\chi(G)=\omega(G)$, then $\widehat{\alpha}(I(G))=\frac{\chi(G)}{\chi(G)-1}$.
2. If G is k-partite, then $\widehat{\alpha}(I(G)) \geq \frac{k}{k-1}$. When G is complete k-partite, $\widehat{\alpha}(I(G))=\frac{k}{k-1}$.
3. If G is bipartite, $\widehat{\alpha}(I(G))=2$.
4. If $G=C_{2 n+1}$ is an odd cycle, then $\widehat{\alpha}\left(I\left(C_{2 n+1}\right)\right)=\frac{2 n+1}{n+1}$.
5. If $G=C_{2 n+1}^{c}$, then $\widehat{\alpha}\left(I\left(C_{2 n+1}^{c}\right)\right)=\frac{2 n+1}{2 n-1}$.

COMPARING POWERS OF EDGE IDEALS

Theorem (J-, Kamp, and Vander Woude (2019))
Let I be the edge ideal of an odd cycle on $2 n+1$ vertices. Then:

1. $I^{(m)}=I^{m}$ for $1 \leq m \leq n$.

COMPARING POWERS OF EDGE IDEALS

Theorem (J-, Kamp, and Vander Woude (2019))
Let I be the edge ideal of an odd cycle on $2 n+1$ vertices. Then:

1. $I^{(m)}=I^{m}$ for $1 \leq m \leq n$.
2. $I^{(n+1)}=I^{n+1}+\left(x_{1} x_{2} \cdots x_{2 n+1}\right)$.

COMPARING POWERS OF EDGE IDEALS

Theorem (J-, Kamp, and Vander Woude (2019))
Let I be the edge ideal of an odd cycle on $2 n+1$ vertices. Then:

1. $I^{(m)}=I^{m}$ for $1 \leq m \leq n$.
2. $\prime^{(n+1)}=I^{n+1}+\left(x_{1} x_{2} \cdots x_{2 n+1}\right)$.
3. $\rho(I)=\frac{2 n+2}{2 n+1}$.

RESOURCES

RESOURCES

- Symbolic Powers of Ideals (2018), by Dao et al.

RESOURCES

- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)

RESOURCES

- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)
- A Beginner's Guide to Edge and Cover Ideals (2013) by Adam Van Tuyl
- Symbolic Powers of Ideals (2018), by Dao et al.
- Eloísa Grifo's lecture notes (2022)
- A Beginner's Guide to Edge and Cover Ideals (2013) by Adam Van Tuyl

Lecture Notes of the Unione Matematica Italiana
Enrico Carlini
Huy Tài Hà
Brian Harbourne
Adam Van Tuyl

Ideals of Powers and Powers of Ideals

Intersecting Algebra, Geometry, and Combinatorics

Thanks!

