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I first met Brian in the Early Dawn of Time ...

Bowdoin (1985)? Ravello (1992)?

Later, I made a short visit to Lincoln in 1999:
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July 16, 1999
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In addition to Brian’s, there are two other names whose
collaborative work will appear frequently in this talk:

Tony Geramita (August 4, 1942 – June 22, 2016)

and

Uwe Nagel (presumably somewhere in the room but I can’t see
you guys...)
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June, 1986, Kingston, Ontario
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April 17, 1993
Algonquin Park, Ontario

Who knows what theorem
he was thinking about in those
days...
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To “complete the picture,” here is a picture of me from a few
years ago, working on a theorem about geproci sets on a
quadric surface.

(I’m still working on that problem.)
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“And let’s get started.” -Fareed Zakaria

This talk centers around the paper [GHM2013]:

Star Configurations in Pn:
A.V. Geramita, B. Harbourne, J. Migliore
Journal of Algebra 376 (2013), 279–299

in the context of a lot of related work that came before, and a lot
of related work that came after this paper.

Many extremely interesting papers have been written in which
star configurations have played a prominent role. Lacking time,
this talk will focus on a small subset (with apologies).

I mostly want to talk about a useful tool to study star
configurations and related problems.
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Overview: From the MathSciNet review by Enrico Carlini.

In this paper the authors start a systematic study of the
ideals of star configurations.

A star configuration is constructed as follows.

Given a collection of properly intersecting hyperplanes, one
takes all possible intersections of them in groups of c.

The variety obtained in this way is called a star configuration
and it has codimension c.

He goes on to give some citations of related work. He
continues...
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The authors provide many interesting results on the ideal of
a star configuration.

More precisely, they consider the following:

I Hilbert functions;
I minimal free resolutions;
I symbolic powers;
I arithmetic Cohen-Macaulayness;
I primary decompositions;
I minimal degree of a generator;
I maximal degree of a minimal generator;
I resurgence.

We won’t talk about most of these today.
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What is a star configuration and whence the name?

We’ll start with 0-dimensional star configurations in the plane.

Definition. Let `1, . . . , `r be lines in P2 with no three concurrent.

Assume r ≥ 2.

The star configuration defined by `1, . . . , `r is the set, Z , of
(r

2

)
distinct points defined by the pairwise intersection of the `i .

Remark. The non-concurrence is the only genericity
assumption we will need.

Example. r = 100 lines tangent to the same conic define a
perfectly good star configuration.

We’ll discuss soon how to relax the non-concurrence condition.
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Example. r = 5.

Hence the name!

•

•

•
•

•

•

•

•

•

•

(5
2

)
= 10 pairwise intersections of the lines

(since the codimension is c = 2)
Erase the lines.

The intersection points, Z , form a star configuration
with 10 points, defined by r = 5 lines.
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Note: it’s an inductive process. At each step we added a
hyperplane section to the previous set of points. For example...

•

•

•

•

•

• •
•

•

•

F

Let F be the curve defined by the union of the first four lines.Let Z1 be the corresponding
(4

2

)
= 6 points.

Note that Z1 is contained in F , i.e. F ∈ IZ1 .

Let L be the fifth line.Then Z = Z1 ∪ (F ∩ L).

L

This is an example of a

basic double link (BDL). Key Fact: IZ = L · IZ1 + (F )
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A star is born – where did the name come from?

In [GMS2006] Tony, Sindi Sabourin and I introduced a set of
points Ct ⊂ P2 as follows.

Let λ1, . . . , λt be a set of t distinct lines in P2 such that
each λi meets the remaining t − 1 lines in t − 1 distinct
points.

We denote by Ct the configuration consisting of the
( t

2

)
pairwise intersections of these lines.

But we didn’t call them star configurations, and our picture
didn’t look anything like a star!
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It’s not clear where star configurations first obtained this name,
but it seems to be due to Tony.

The paper [GHM2013] starts off indicating that star
configurations

“have arisen as objects of study in numerous research
projects lately”

and suggests that their properties were not well understood,
and “it is of interest to understand them better,” as Enrico also
mentioned.

Since then, many papers have focused on star configurations
from different points of view.
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Star configurations in higher codimension

As Enrico’s review pointed out, there is no reason to restrict to
the plane, and no reason to restrict to codimension 2.

Takeaway (some details coming): producing a codimension c
star configuration is an inductive process on c and r , using a
more general form of basic double linkage.

Example. How do we produce the
(5

3

)
= 10 points of

intersection of 5 planes in P3, taken 3 at a time?
(Codimension 3.)

Assume no 4 of the planes are concurrent.

We’ll build up the points inductively, but with a bit of care.
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Step 1: Label the planes L1,L2,L3,L4,L5.

Step 2: Produce a sequence of codimension 2 star
configurations following the same steps as we saw for P2 (in
fact the P2 result is the hyperplane section of the P3 one):

I Let C(L1,L2) be the star configuration gotten with L1,L2 (it
is a line).
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I Similarly produce additional curves (codimension 2 star
configurations):

• C(L1,L2,L3)

degC(L1,L2,L3) =
(3

2

)
= 3 (“coordinate axes”),

• C(L1,L2,L3,L4)

degC(L1,L2,L3,L4) =
(4

2

)
= 6 (“1-skeleton of tetrahedron”)

Note C(L1,L2) ⊂ C(L1,L2,L3) ⊂ C(L1,L2,L3,L4).

I We’ll see shortly that these curves are all ACM (thanks to
the theory of basic double links).
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Step 3: Now produce finite sets of points by adding hyperplane
sections.

I Z (L1,L2,L3) is the hyperplane section of C(L1,L2) by L3.

degZ (L1,L2,L3) =
(3

3
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This process, e.g.

Z (L1,L2,L3,L4,L5) =

Z (L1,L2,L3,L4) ∪
[
C(L1,L2,L3,L4) ∩ L5

]
takes a divisor on an ACM curve and adds to that divisor a
hyperplane section of that curve.

This is a fancier version of basic double linkage called basic
double G-linkage.

Juan C. Migliore Star configurations



A brief history of basic double linkage (BDL)

As the name suggests, the construction started in liaison theory
(= linkage theory).

It is a fundamental component of the structure theorem for a
codimension 2 even liaison class of subschemes of Pn

(or of an arithmetically Gorenstein variety)

called the Lazarsfeld-Rao property.

The evolution of basic double linkage, and the appearance of
many applications, emerged over the decades with work of
many authors, including:
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I Schwartau (1982 Ph.D. thesis)
I Lazarsfeld and Rao (1983)
I Bolondi and M. (many, between 1987 and 1993)
I Martin-Deschamps and Perrin (1990)
I Ballico, Bolondi and M. (1991)
I Geramita and M. (1994)
I Nollet (1996)
I Nagel (1998)
I Kleppe, M., Miró-Roig, Nagel and Peterson [KMMNP2001]
I M. and Nagel (many, e.g. [MN2002], [MN2003])

Essential facts for us, glossing over details:
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Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form.

Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Theorem. [KMMNP2001]
Let C ⊂ S ⊂ Pn be schemes. Let A be a form. Assume

I S is ACM;

Remark: For codimension 2 star configurations, S is a
hypersurface (union of planes).

As we saw, for higher codimension star configurations, S is
not a hypersurface but still needs to be ACM.

C does not need to be ACM.

I dimC + 1 = dimS.

(C is a divisor on S.)

I A does not vanish on any component of S, so A cuts out a
(hypersurface section) divisor, on S. Call it Y .

Remark: it’s OK if A vanishes on a component of C! But
we need to be careful with “union” below. Example coming.

Then

(a) IC∪Y = A · IC + IS (as saturated ideals), and you can get
lots of information about IC∪Y from knowledge of IC and IS.

Specifically, info about Hilbert functions and Betti numbers.

(b) C ∪ Y is Gorenstein-linked to C in two steps. In particular,
one is ACM iff the other is. I.e. ACMness is preserved.

Juan C. Migliore Star configurations



Corollary. [MN2002]
Let V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ Pn be ACM schemes of the same
dimension.

Let H1, . . . ,Hr be hypersurfaces, defined by forms F1, . . . ,Fr ,
such that for each i, Hi contains no component of Vj for j ≤ i .

Let Wi = Vi ∩ Hi (corresponding hypersurface sections).

Let Z =
⋃r

i=1 Wi . (Really this is a scheme-theoretic statement.)

Then

(a) the ideal IZ and the Hilbert function of Z can be written
explicitly;

(b) Z is ACM.

Remark. This is exactly what we used in our example.
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Back to star configurations

Corollary. [GHM2013]
Let L = {`1, . . . `r} be hyperplanes in Pn, r ≥ n.

Fix c with 2 ≤ c ≤ n.

Assume no c + 1 of the `i meet in codimension c.

(This is Enrico’s “properly intersecting.”)Let Xc(L) be the codimension c star configuration defined by L,

i.e. Xc(L) is the union of all the linear varieties defined by
intersections of c elements of L.

Then

(a) Xc(L) is ACM;

(b) the minimal generators, Hilbert function and Betti numbers
of Xc(L) can be computed in terms of r and c.
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Then

(a) Xc(L) is ACM;

(b) the minimal generators, Hilbert function and Betti numbers
of Xc(L) can be computed in terms of r and c.
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Corollary. (M.-Nagel-Schenck 2022)
Let L = {`1, . . . , `r} be hyperplanes in Pn, r ≥ n, defined by
linear forms Li , no 3 meeting in codimension 2.

Let F =
r∏

i=1

Li . Let J be the Jacobian ideal of F :

J = 〈Fx0 , . . . ,Fxn〉, where Fxi =
∂F
∂xi

.

Then the radical
√

J and the top dimensional part J top of J
coincide and define a codim 2 ACM subscheme of Pn.

This scheme is precisely the codimension 2 star configuration
defined by L.

Remark. The bulk of the paper aimed to relax the condition “no
3 meeting in codimension 2.” We omit details here.
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Remark. The fact that the Jacobian gives the codimension 2
star configuration is intuitively clear from basic double linkage,

since the star configuration is the singular locus of the
hypersurface defined by F =

∏
Li , and Jacobian ideals give

you the singular locus [MNS].

But a rigorous ideal-theoretic proof directly using the Jacobian
takes some extra work [MN].

The point is to relate Jacobian ideals to basic double links (and
liaison addition).
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Sidenote: From hyperplanes to hypersurfaces

A paper with Tony, Brian and Uwe (2017) began a study
extending the basic double link approach (and much more) to
hypersurface configurations.

(Not the Jacobian approach.)

I.e. extend star configurations to “hypersurface configurations.”

The bulk of this work was done during a visit to Kingston in
2014:
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June, 2014, Kingston, Ontario

Juan C. Migliore Star configurations



Shin and others also explored these configurations (also not
from a Jacobian point of view).

M-Nagel (in progress) extends this by tying it to a careful study
of the Jacobian approach.

We need to relate Jacobian ideals to basic double linkage, but
now the fact that hypersurfaces have degree ≥ 1 is a major
complication, especially to weaken the “genericity” assumption.

The main goal is to extend the work with Uwe and Hal
mentioned above, but again making rigorous the connection to
Jacobians.

There’s not enough time in this talk to discuss those results.
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The two-fold way∗

So far: In codimension 2 we get the same star configuration,
whether you use a Jacobian ideal or BDL.

To do that we needed no three (i.e. c + 1) of the hyperplanes to
meet in codimension 2 (i.e. c).

What if we relax this genericity assumption?

∗ This is the title of a different paper with Brian and Tony, but is
used here in a slightly different context.
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Example.

•

• •

Basic double linkage and Jacobian ideals both give three
points. But move the “horizontal” line down...
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Example.

•

x y

x + y

What does the Jacobian give and what does BDL give?
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Jacobian ideal:

F = xy(x + y) = x2y + xy2, so

J(F ) = 〈Fx ,Fy ,Fz〉 = 〈2xy + y2, x2 + 2xy〉

a non-reduced complete intersection scheme of degree 4
supported at a point. (This approach played a major role in
[MNS] and in [MN].)

Basic Double Link:

(x + y) · 〈x , y〉+ 〈xy〉 = 〈x2, xy , y2〉 = 〈x , y〉2,

a non-reduced scheme of degree 3 supported at a point.

No longer the same scheme! The twofold way!
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Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth ...

Robert Frost
The Road Not Taken

What, you have an appointment somewhere? Let’s go
down both roads and see what we see.

Brian Harbourne
Just about any time he’s in a new city,
or while doing mathematics.
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The Wager (with apologies to David Grann)

A celebrated theorem of Alexander and Hirschowitz says that
with only a couple of exceptions, a general set of double points
in Pn has generic Hilbert function.

This result took hundreds of pages.

Undaunted, in 2000 I bet Tony Geramita a pizza that in the
subsequent “few” years we would know a classification of all
Hilbert functions that occur for sets of double points in P2.

My reasoning: well, how hard can it be?

(Easiest pizza Tony ever won!)
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This led to a 2006 paper with Tony and Sindi Sabourin.

This paper made a connection between the Hilbert function of
the support of a set of double points and the Hilbert function of
the double points.

Given any Hilbert function h for a reduced set of points in P2, we

I constructed a specific set of reduced points X with Hilbert
function h;

I produced the double point scheme 2X supported on X
using a sequence of basic double links (based on the
above example);

I gave a description of the Hilbert function and Betti
numbers of 2X .

We also discussed further questions, including some about
“star configurations.”
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Motivated by this paper, Brian, Susan Cooper and Zach Teitler
wrote

Combinatorial bounds on Hilbert functions of fat points in
projective space, JPAA 215 (2011).

In this paper they “take an approach opposite to that presented
in [16]” (GMS).

And so Basic Double Unlinkage is born??? Only time will tell.

Anyway,
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Happy Birthday, Brian,

and all the best!!
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