Star configurations

and their progenitors and descendants

Conference on Unexpected and Asymptotic Properties of Algebraic Varieties

A conference to celebrate Professor Brian Harbourne

Juan Migliore University of Notre Dame

August 11-13, 2023
University of Nebraska
Slides available by emailing migliore.1@nd.edu

I first met Brian in the Early Dawn of Time ...

I first met Brian in the Early Dawn of Time ...

Bowdoin (1985)? Ravello (1992)?

I first met Brian in the Early Dawn of Time ...

Bowdoin (1985)? Ravello (1992)?

Later, I made a short visit to Lincoln in 1999:

July 16, 1999

Juan C. Migliore

In addition to Brian's, there are two other names whose collaborative work will appear frequently in this talk:

Tony Geramita (August 4, 1942 - June 22, 2016)

In addition to Brian's, there are two other names whose collaborative work will appear frequently in this talk:

Tony Geramita (August 4, 1942 - June 22, 2016)
and

Uwe Nagel (presumably somewhere in the room but I can't see you guys...)

June, 1986, Kingston, Ontario

April 17, 1993
Algonquin Park, Ontario

April 17, 1993
Algonquin Park, Ontario
Who knows what theorem he was thinking about in those days...

To "complete the picture," here is a picture of me from a few years ago, working on a theorem about geproci sets on a quadric surface.

To "complete the picture," here is a picture of me from a few years ago, working on a theorem about geproci sets on a quadric surface.

To "complete the picture," here is a picture of me from a few years ago, working on a theorem about geproci sets on a quadric surface. (I'm still working on that problem.)

"And let's get started." -Fareed Zakaria

"And let's get started." -Fareed Zakaria

This talk centers around the paper [GHM2013]:

Star Configurations in \mathbb{P}^{n} : A.V. Geramita, B. Harbourne, J. Migliore Journal of Algebra 376 (2013), 279-299

in the context of a lot of related work that came before, and a lot of related work that came after this paper.

"And let's get started." -Fareed Zakaria

This talk centers around the paper [GHM2013]:

Star Configurations in \mathbb{P}^{n} : A.V. Geramita, B. Harbourne, J. Migliore Journal of Algebra 376 (2013), 279-299

in the context of a lot of related work that came before, and a lot of related work that came after this paper.

Many extremely interesting papers have been written in which star configurations have played a prominent role. Lacking time, this talk will focus on a small subset (with apologies).

"And let's get started." -Fareed Zakaria

This talk centers around the paper [GHM2013]:

Star Configurations in \mathbb{P}^{n} : A.V. Geramita, B. Harbourne, J. Migliore Journal of Algebra 376 (2013), 279-299

in the context of a lot of related work that came before, and a lot of related work that came after this paper.

Many extremely interesting papers have been written in which star configurations have played a prominent role. Lacking time, this talk will focus on a small subset (with apologies).

I mostly want to talk about a useful tool to study star configurations and related problems.

Overview: From the MathSciNet review by Enrico Carlini.

Overview: From the MathSciNet review by Enrico Carlini.

In this paper the authors start a systematic study of the ideals of star configurations.

A star configuration is constructed as follows.
Given a collection of properly intersecting hyperplanes, one takes all possible intersections of them in groups of c.

The variety obtained in this way is called a star configuration and it has codimension c.

He goes on to give some citations of related work. He continues...

The authors provide many interesting results on the ideal of a star configuration.

More precisely, they consider the following:

- Hilbert functions;
- minimal free resolutions;
- symbolic powers;
- arithmetic Cohen-Macaulayness;
- primary decompositions;
- minimal degree of a generator;
- maximal degree of a minimal generator;
- resurgence.

We won't talk about most of these today.

What is a star configuration and whence the name?

We'll start with 0-dimensional star configurations in the plane.

What is a star configuration and whence the name?

We'll start with 0 -dimensional star configurations in the plane.
Definition. Let $\ell_{1}, \ldots, \ell_{r}$ be lines in \mathbb{P}^{2} with no three concurrent.
Assume $r \geq 2$.

What is a star configuration and whence the name?

We'll start with 0 -dimensional star configurations in the plane.
Definition. Let $\ell_{1}, \ldots, \ell_{r}$ be lines in \mathbb{P}^{2} with no three concurrent.
Assume $r \geq 2$.
The star configuration defined by $\ell_{1}, \ldots, \ell_{r}$ is the set, Z, of $\binom{r}{2}$ distinct points defined by the pairwise intersection of the ℓ_{i}.

What is a star configuration and whence the name?

We'll start with 0 -dimensional star configurations in the plane.
Definition. Let $\ell_{1}, \ldots, \ell_{r}$ be lines in \mathbb{P}^{2} with no three concurrent.
Assume $r \geq 2$.
The star configuration defined by $\ell_{1}, \ldots, \ell_{r}$ is the set, Z, of $\binom{r}{2}$ distinct points defined by the pairwise intersection of the ℓ_{i}.

Remark. The non-concurrence is the only genericity assumption we will need.

What is a star configuration and whence the name?

We'll start with 0 -dimensional star configurations in the plane.
Definition. Let $\ell_{1}, \ldots, \ell_{r}$ be lines in \mathbb{P}^{2} with no three concurrent.
Assume $r \geq 2$.
The star configuration defined by $\ell_{1}, \ldots, \ell_{r}$ is the set, Z, of $\binom{r}{2}$ distinct points defined by the pairwise intersection of the ℓ_{i}.

Remark. The non-concurrence is the only genericity assumption we will need.

Example. $r=100$ lines tangent to the same conic define a perfectly good star configuration.

What is a star configuration and whence the name?

We'll start with 0 -dimensional star configurations in the plane.
Definition. Let $\ell_{1}, \ldots, \ell_{r}$ be lines in \mathbb{P}^{2} with no three concurrent.
Assume $r \geq 2$.
The star configuration defined by $\ell_{1}, \ldots, \ell_{r}$ is the set, Z, of $\binom{r}{2}$ distinct points defined by the pairwise intersection of the ℓ_{i}.

Remark. The non-concurrence is the only genericity assumption we will need.

Example. $r=100$ lines tangent to the same conic define a perfectly good star configuration.

We'll discuss soon how to relax the non-concurrence condition.

Example. $r=5$.

Example. $r=5$.

Example. $r=5$.

Example. $r=5$.

Example. $r=5$.

Example. $r=5$.

Example. $r=5$.

Hence the name!

Example. $r=5$.

$\binom{5}{2}=10$ pairwise intersections of the lines (since the codimension is $c=2$)

Example. $r=5$.

Erase the lines.

Example. $r=5$.

The intersection points, Z, form a star configuration with 10 points, defined by $r=5$ lines.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Let F be the curve defined by the union of the first four lines.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Let Z_{1} be the corresponding $\binom{4}{2}=6$ points.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Let Z_{1} be the corresponding $\binom{4}{2}=6$ points.
Note that Z_{1} is contained in F, i.e. $F \in I_{Z_{1}}$.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Let L be the fifth line.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Then $Z=Z_{1} \cup(F \cap L)$.

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Then $Z=Z_{1} \cup(F \cap L)$. This is an example of a basic double link (BDL).

Note: it's an inductive process. At each step we added a hyperplane section to the previous set of points. For example...

Then $Z=Z_{1} \cup(F \cap L)$. This is an example of a basic double link (BDL). Key Fact: $I_{Z}=L \cdot I_{Z_{1}}+(F)$

A star is born - where did the name come from?

A star is born - where did the name come from?

In [GMS2006] Tony, Sindi Sabourin and I introduced a set of points $C_{t} \subset \mathbb{P}^{2}$ as follows.

Let $\lambda_{1}, \ldots, \lambda_{t}$ be a set of t distinct lines in \mathbb{P}^{2} such that each λ_{j} meets the remaining $t-1$ lines in $t-1$ distinct points.

We denote by C_{t} the configuration consisting of the $\binom{t}{2}$ pairwise intersections of these lines.

But we didn't call them star configurations, and our picture didn't look anything like a star!

It's not clear where star configurations first obtained this name, but it seems to be due to Tony.

It's not clear where star configurations first obtained this name, but it seems to be due to Tony.

The paper [GHM2013] starts off indicating that star configurations
> "have arisen as objects of study in numerous research projects lately"

and suggests that their properties were not well understood, and "it is of interest to understand them better," as Enrico also mentioned.

Since then, many papers have focused on star configurations from different points of view.

Star configurations in higher codimension

As Enrico's review pointed out, there is no reason to restrict to the plane, and no reason to restrict to codimension 2.

Star configurations in higher codimension

As Enrico's review pointed out, there is no reason to restrict to the plane, and no reason to restrict to codimension 2.

Takeaway (some details coming): producing a codimension c star configuration is an inductive process on c and r, using a more general form of basic double linkage.

Star configurations in higher codimension

As Enrico's review pointed out, there is no reason to restrict to the plane, and no reason to restrict to codimension 2.

Takeaway (some details coming): producing a codimension c star configuration is an inductive process on c and r, using a more general form of basic double linkage.

Example. How do we produce the $\binom{5}{3}=10$ points of intersection of 5 planes in \mathbb{P}^{3}, taken 3 at a time?
(Codimension 3.)

Star configurations in higher codimension

As Enrico's review pointed out, there is no reason to restrict to the plane, and no reason to restrict to codimension 2.

Takeaway (some details coming): producing a codimension c star configuration is an inductive process on c and r, using a more general form of basic double linkage.

Example. How do we produce the $\binom{5}{3}=10$ points of intersection of 5 planes in \mathbb{P}^{3}, taken 3 at a time?
(Codimension 3.)
Assume no 4 of the planes are concurrent.

Star configurations in higher codimension

As Enrico's review pointed out, there is no reason to restrict to the plane, and no reason to restrict to codimension 2.

Takeaway (some details coming): producing a codimension c star configuration is an inductive process on c and r, using a more general form of basic double linkage.

Example. How do we produce the $\binom{5}{3}=10$ points of intersection of 5 planes in \mathbb{P}^{3}, taken 3 at a time?
(Codimension 3.)
Assume no 4 of the planes are concurrent.
We'll build up the points inductively, but with a bit of care.

Step 1: Label the planes $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$.

Step 1: Label the planes $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$.

Step 2: Produce a sequence of codimension 2 star configurations following the same steps as we saw for \mathbb{P}^{2} (in fact the \mathbb{P}^{2} result is the hyperplane section of the \mathbb{P}^{3} one):

Step 1: Label the planes $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$.

Step 2: Produce a sequence of codimension 2 star configurations following the same steps as we saw for \mathbb{P}^{2} (in fact the \mathbb{P}^{2} result is the hyperplane section of the \mathbb{P}^{3} one):

- Let $C\left(L_{1}, L_{2}\right)$ be the star configuration gotten with L_{1}, L_{2} (it is a line).
- Similarly produce additional curves (codimension 2 star configurations):
- $C\left(L_{1}, L_{2}, L_{3}\right)$

$$
\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{2}=3 \text { ("coordinate axes"), }
$$

- Similarly produce additional curves (codimension 2 star configurations):
- $C\left(L_{1}, L_{2}, L_{3}\right)$

$$
\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{2}=3 \text { ("coordinate axes"), }
$$

- $C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$
$\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=\binom{4}{2}=6$ ("1-skeleton of tetrahedron")
- Similarly produce additional curves (codimension 2 star configurations):
- $C\left(L_{1}, L_{2}, L_{3}\right)$

$$
\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{2}=3 \text { ("coordinate axes"), }
$$

- $C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$
$\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=\binom{4}{2}=6$ ("1-skeleton of tetrahedron")

Note

$$
C\left(L_{1}, L_{2}\right) \subset C\left(L_{1}, L_{2}, L_{3}\right) \subset C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)
$$

- Similarly produce additional curves (codimension 2 star configurations):
- $C\left(L_{1}, L_{2}, L_{3}\right)$

$$
\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{2}=3 \text { ("coordinate axes"), }
$$

- $C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$

$$
\operatorname{deg} C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=\binom{4}{2}=6 \text { ("1-skeleton of tetrahedron") }
$$

Note $C\left(L_{1}, L_{2}\right) \subset C\left(L_{1}, L_{2}, L_{3}\right) \subset C\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$.

- We'll see shortly that these curves are all ACM (thanks to the theory of basic double links).

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}.

$$
\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1
$$

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}.

$$
\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1 . \checkmark
$$

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}. $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1 . \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=Z\left(L_{1}, L_{2}, L_{3}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}\right) \cap L_{4}\right]$ $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=1+\binom{3}{2}=4=\binom{4}{3}$.

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}. $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1 . \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=Z\left(L_{1}, L_{2}, L_{3}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}\right) \cap L_{4}\right]$ $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=1+\binom{3}{2}=4=\binom{4}{3} \cdot \checkmark$

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}. $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1 . \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=Z\left(L_{1}, L_{2}, L_{3}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}\right) \cap L_{4}\right]$
$\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=1+\binom{3}{2}=4=\binom{4}{3} \cdot \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right)=$
$Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cap L_{5}\right]$
$\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right)=4+\binom{4}{2}=10=\binom{5}{3}$.

Step 3: Now produce finite sets of points by adding hyperplane sections.

- $Z\left(L_{1}, L_{2}, L_{3}\right)$ is the hyperplane section of $C\left(L_{1}, L_{2}\right)$ by L_{3}. $\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}\right)=\binom{3}{3}=1 . \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=Z\left(L_{1}, L_{2}, L_{3}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}\right) \cap L_{4}\right]$
$\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=1+\binom{3}{2}=4=\binom{4}{3} \cdot \checkmark$
- $Z\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right)=$
$Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cap L_{5}\right]$
$\operatorname{deg} Z\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right)=4+\binom{4}{2}=10=\binom{5}{3} \cdot \checkmark$

This process, e.g.

$$
\begin{aligned}
& Z\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right)= \\
& \quad Z\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cup\left[C\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \cap L_{5}\right]
\end{aligned}
$$

takes a divisor on an ACM curve and adds to that divisor a hyperplane section of that curve.

This is a fancier version of basic double linkage called basic double G-linkage.

A brief history of basic double linkage (BDL)

A brief history of basic double linkage (BDL)

As the name suggests, the construction started in liaison theory (= linkage theory).

A brief history of basic double linkage (BDL)

As the name suggests, the construction started in liaison theory (= linkage theory).

It is a fundamental component of the structure theorem for a codimension 2 even liaison class of subschemes of \mathbb{P}^{n}
(or of an arithmetically Gorenstein variety)
called the Lazarsfeld-Rao property.

A brief history of basic double linkage (BDL)

As the name suggests, the construction started in liaison theory (= linkage theory).

It is a fundamental component of the structure theorem for a codimension 2 even liaison class of subschemes of \mathbb{P}^{n}
(or of an arithmetically Gorenstein variety)
called the Lazarsfeld-Rao property.
The evolution of basic double linkage, and the appearance of many applications, emerged over the decades with work of many authors, including:

- Schwartau (1982 Ph.D. thesis)
- Lazarsfeld and Rao (1983)
- Bolondi and M. (many, between 1987 and 1993)
- Martin-Deschamps and Perrin (1990)
- Ballico, Bolondi and M. (1991)
- Geramita and M. (1994)
- Nollet (1996)
- Nagel (1998)
- Kleppe, M., Miró-Roig, Nagel and Peterson [KMMNP2001]
- M. and Nagel (many, e.g. [MN2002], [MN2003])

Essential facts for us, glossing over details:

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;

Remark: For codimension 2 star configurations, S is a hypersurface (union of planes).
As we saw, for higher codimension star configurations, S is not a hypersurface but still needs to be ACM.
C does not need to be ACM.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
(C is a divisor on S.)

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Remark: it's OK if A vanishes on a component of C ! But we need to be careful with "union" below. Example coming.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Then

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Then
(a) $I_{C u Y}=A \cdot I_{C}+I_{S}$ (as saturated ideals), and you can get lots of information about $I_{C u Y}$ from knowledge of I_{C} and I_{S}.
Specifically, info about Hilbert functions and Betti numbers.

Theorem. [KMMNP2001]
Let $C \subset S \subset \mathbb{P}^{n}$ be schemes. Let A be a form. Assume

- S is $A C M$;
- $\operatorname{dim} C+1=\operatorname{dim} S$.
- A does not vanish on any component of S, so A cuts out a (hypersurface section) divisor, on S. Call it Y.

Then
(a) $I_{C u Y}=A \cdot I_{C}+I_{S}$ (as saturated ideals), and you can get lots of information about $I_{C \cup Y}$ from knowledge of I_{C} and I_{S}.

Specifically, info about Hilbert functions and Betti numbers.
(b) $C \cup Y$ is Gorenstein-linked to C in two steps. In particular, one is ACM iff the other is. I.e. ACMness is preserved.

Corollary. [MN2002]
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset \mathbb{P}^{n}$ be $A C M$ schemes of the same dimension.

Let H_{1}, \ldots, H_{r} be hypersurfaces, defined by forms F_{1}, \ldots, F_{r}, such that for each i, H_{i} contains no component of V_{j} for $j \leq i$.

Corollary. [MN2002]
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset \mathbb{P}^{n}$ be $A C M$ schemes of the same dimension.

Let H_{1}, \ldots, H_{r} be hypersurfaces, defined by forms F_{1}, \ldots, F_{r}, such that for each i, H_{i} contains no component of V_{j} for $j \leq i$.
Let $W_{i}=V_{i} \cap H_{i}$ (corresponding hypersurface sections).

Corollary. [MN2002]
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset \mathbb{P}^{n}$ be $A C M$ schemes of the same dimension.

Let H_{1}, \ldots, H_{r} be hypersurfaces, defined by forms F_{1}, \ldots, F_{r}, such that for each i, H_{i} contains no component of V_{j} for $j \leq i$.
Let $W_{i}=V_{i} \cap H_{i}$ (corresponding hypersurface sections).
Let $Z=\bigcup_{i=1}^{r} W_{i}$. (Really this is a scheme-theoretic statement.)

Corollary. [MN2002]
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset \mathbb{P}^{n}$ be $A C M$ schemes of the same dimension.

Let H_{1}, \ldots, H_{r} be hypersurfaces, defined by forms F_{1}, \ldots, F_{r}, such that for each i, H_{i} contains no component of V_{j} for $j \leq i$.
Let $W_{i}=V_{i} \cap H_{i}$ (corresponding hypersurface sections).
Let $Z=\bigcup_{i=1}^{r} W_{i}$. (Really this is a scheme-theoretic statement.)
Then
(a) the ideal I_{Z} and the Hilbert function of Z can be written explicitly;
(b) Z is $A C M$.

Corollary. [MN2002]
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset \mathbb{P}^{n}$ be $A C M$ schemes of the same dimension.

Let H_{1}, \ldots, H_{r} be hypersurfaces, defined by forms F_{1}, \ldots, F_{r}, such that for each i, H_{i} contains no component of V_{j} for $j \leq i$.
Let $W_{i}=V_{i} \cap H_{i}$ (corresponding hypersurface sections).
Let $Z=\bigcup_{i=1}^{r} W_{i}$. (Really this is a scheme-theoretic statement.)
Then
(a) the ideal I_{Z} and the Hilbert function of Z can be written explicitly;
(b) Z is $A C M$.

Remark. This is exactly what we used in our example.

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.
Fix c with $2 \leq c \leq n$.
Assume no $c+1$ of the ℓ_{i} meet in codimension c.

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.
Fix c with $2 \leq c \leq n$.
Assume no $c+1$ of the ℓ_{i} meet in codimension c.
(This is Enrico's "properly intersecting.")

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.
Fix c with $2 \leq c \leq n$.
Assume no $c+1$ of the ℓ_{i} meet in codimension c.

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.
Fix c with $2 \leq c \leq n$.
Assume no $c+1$ of the ℓ_{i} meet in codimension c.
Let $X_{c}(\mathcal{L})$ be the codimension c star configuration defined by \mathcal{L},
i.e. $X_{c}(\mathcal{L})$ is the union of all the linear varieties defined by intersections of c elements of \mathcal{L}.

Back to star configurations

Corollary. [GHM2013]
Let $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$.
Fix c with $2 \leq c \leq n$.
Assume no $c+1$ of the ℓ_{i} meet in codimension c.
Let $X_{c}(\mathcal{L})$ be the codimension c star configuration defined by \mathcal{L},
i.e. $X_{c}(\mathcal{L})$ is the union of all the linear varieties defined by intersections of c elements of \mathcal{L}.

Then
(a) $X_{C}(\mathcal{L})$ is $A C M$;
(b) the minimal generators, Hilbert function and Betti numbers of $X_{c}(\mathcal{L})$ can be computed in terms of r and c.

Corollary. (M.-Nagel-Schenck 2022)
Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$, defined by linear forms L_{i}, no 3 meeting in codimension 2 .

Corollary. (M.-Nagel-Schenck 2022)
Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$, defined by linear forms L_{i}, no 3 meeting in codimension 2 .

Let $F=\prod_{i=1}^{r} L_{i}$. Let J be the Jacobian ideal of F :

$$
J=\left\langle F_{x_{0}}, \ldots, F_{x_{n}}\right\rangle, \text { where } F_{x_{i}}=\frac{\partial F}{\partial x_{i}} .
$$

Corollary. (M.-Nagel-Schenck 2022)
Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$, defined by linear forms L_{i}, no 3 meeting in codimension 2 .
Let $F=\prod_{i=1}^{r} L_{i}$. Let J be the Jacobian ideal of F :

$$
J=\left\langle F_{x_{0}}, \ldots, F_{x_{n}}\right\rangle \text {, where } F_{x_{i}}=\frac{\partial F}{\partial x_{i}} .
$$

Then the radical \sqrt{J} and the top dimensional part ${ }^{\text {top }}$ of J coincide and define a codim 2 ACM subscheme of \mathbb{P}^{n}.

This scheme is precisely the codimension 2 star configuration defined by \mathcal{L}.

Corollary. (M.-Nagel-Schenck 2022)
Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{r}\right\}$ be hyperplanes in $\mathbb{P}^{n}, r \geq n$, defined by linear forms L_{i}, no 3 meeting in codimension 2 .
Let $F=\prod_{i=1}^{r} L_{i}$. Let J be the Jacobian ideal of F :

$$
J=\left\langle F_{x_{0}}, \ldots, F_{x_{n}}\right\rangle \text {, where } F_{x_{i}}=\frac{\partial F}{\partial x_{i}} .
$$

Then the radical $\sqrt{ } J$ and the top dimensional part $J^{\text {top }}$ of J coincide and define a codim 2 ACM subscheme of \mathbb{P}^{n}.

This scheme is precisely the codimension 2 star configuration defined by \mathcal{L}.

Remark. The bulk of the paper aimed to relax the condition "no 3 meeting in codimension 2." We omit details here.

Remark. The fact that the Jacobian gives the codimension 2 star configuration is intuitively clear from basic double linkage, since the star configuration is the singular locus of the hypersurface defined by $F=\Pi L_{i}$, and Jacobian ideals give you the singular locus [MNS].

Remark. The fact that the Jacobian gives the codimension 2 star configuration is intuitively clear from basic double linkage, since the star configuration is the singular locus of the hypersurface defined by $F=\Pi L_{i}$, and Jacobian ideals give you the singular locus [MNS].

But a rigorous ideal-theoretic proof directly using the Jacobian takes some extra work [MN].

The point is to relate Jacobian ideals to basic double links (and liaison addition).

Sidenote: From hyperplanes to hypersurfaces

A paper with Tony, Brian and Uwe (2017) began a study extending the basic double link approach (and much more) to hypersurface configurations.
(Not the Jacobian approach.)
I.e. extend star configurations to "hypersurface configurations."

Sidenote: From hyperplanes to hypersurfaces

A paper with Tony, Brian and Uwe (2017) began a study extending the basic double link approach (and much more) to hypersurface configurations.
(Not the Jacobian approach.)
I.e. extend star configurations to "hypersurface configurations."

The bulk of this work was done during a visit to Kingston in 2014:

June, 2014, Kingston, Ontario

Shin and others also explored these configurations (also not from a Jacobian point of view).

Shin and others also explored these configurations (also not from a Jacobian point of view).

M-Nagel (in progress) extends this by tying it to a careful study of the Jacobian approach.

We need to relate Jacobian ideals to basic double linkage, but now the fact that hypersurfaces have degree ≥ 1 is a major complication, especially to weaken the "genericity" assumption.

Shin and others also explored these configurations (also not from a Jacobian point of view).

M-Nagel (in progress) extends this by tying it to a careful study of the Jacobian approach.

We need to relate Jacobian ideals to basic double linkage, but now the fact that hypersurfaces have degree ≥ 1 is a major complication, especially to weaken the "genericity" assumption.

The main goal is to extend the work with Uwe and Hal mentioned above, but again making rigorous the connection to Jacobians.

There's not enough time in this talk to discuss those results.

The two-fold way ${ }^{*}$

The two-fold way*

* This is the title of a different paper with Brian and Tony, but is used here in a slightly different context.

The two-fold way ${ }^{*}$

The two-fold way*

So far: In codimension 2 we get the same star configuration, whether you use a Jacobian ideal or BDL.

To do that we needed no three (i.e. $c+1$) of the hyperplanes to meet in codimension 2 (i.e. c).

The two-fold way

So far: In codimension 2 we get the same star configuration, whether you use a Jacobian ideal or BDL.

To do that we needed no three (i.e. $c+1$) of the hyperplanes to meet in codimension 2 (i.e. c).

What if we relax this genericity assumption?

Example.

Basic double linkage and Jacobian ideals both give three points. But move the "horizontal" line down...

Example.

What does the Jacobian give and what does BDL give?

Jacobian ideal:
$F=x y(x+y)=x^{2} y+x y^{2}$, so

$$
J(F)=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle
$$

a non-reduced complete intersection scheme of degree 4 supported at a point. (This approach played a major role in [MNS] and in [MN].)

Jacobian ideal:

$$
F=x y(x+y)=x^{2} y+x y^{2}, \text { so }
$$

$$
J(F)=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle
$$

a non-reduced complete intersection scheme of degree 4 supported at a point. (This approach played a major role in [MNS] and in [MN].)

Basic Double Link:

$$
(x+y) \cdot\langle x, y\rangle+\langle x y\rangle=\left\langle x^{2}, x y, y^{2}\right\rangle=\langle x, y\rangle^{2}
$$

a non-reduced scheme of degree 3 supported at a point.

Jacobian ideal:

$$
\begin{aligned}
& F=x y(x+y)=x^{2} y+x y^{2}, \text { so } \\
& \qquad J(F)=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle
\end{aligned}
$$

a non-reduced complete intersection scheme of degree 4 supported at a point. (This approach played a major role in [MNS] and in [MN].)

Basic Double Link:

$$
(x+y) \cdot\langle x, y\rangle+\langle x y\rangle=\left\langle x^{2}, x y, y^{2}\right\rangle=\langle x, y\rangle^{2}
$$

a non-reduced scheme of degree 3 supported at a point.

No longer the same scheme!

Jacobian ideal:

$$
\begin{aligned}
& F=x y(x+y)=x^{2} y+x y^{2}, \text { so } \\
& \qquad J(F)=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle
\end{aligned}
$$

a non-reduced complete intersection scheme of degree 4 supported at a point. (This approach played a major role in [MNS] and in [MN].)

Basic Double Link:

$$
(x+y) \cdot\langle x, y\rangle+\langle x y\rangle=\left\langle x^{2}, x y, y^{2}\right\rangle=\langle x, y\rangle^{2}
$$

a non-reduced scheme of degree 3 supported at a point.

No longer the same scheme! The twofold way!

Two roads diverged in a yellow wood, And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth ...

Robert Frost
The Road Not Taken

Two roads diverged in a yellow wood, And sorry I could not travel both
 And be one traveler, long I stood
 And looked down one as far as I could
 To where it bent in the undergrowth ...
 Robert Frost
 The Road Not Taken

What, you have an appointment somewhere? Let's go down both roads and see what we see.

Brian Harbourne

Just about any time he's in a new city,

Two roads diverged in a yellow wood, And sorry I could not travel both
 And be one traveler, long I stood
 And looked down one as far as I could
 To where it bent in the undergrowth ...
 Robert Frost
 The Road Not Taken

What, you have an appointment somewhere? Let's go down both roads and see what we see.

Brian Harbourne

Just about any time he's in a new city, or while doing mathematics.

The Wager (with apologies to David Grann)

The Wager (with apologies to David Grann)

A celebrated theorem of Alexander and Hirschowitz says that with only a couple of exceptions, a general set of double points in \mathbb{P}^{n} has generic Hilbert function.

This result took hundreds of pages.

The Wager (with apologies to David Grann)

A celebrated theorem of Alexander and Hirschowitz says that with only a couple of exceptions, a general set of double points in \mathbb{P}^{n} has generic Hilbert function.

This result took hundreds of pages.
Undaunted, in 2000 I bet Tony Geramita a pizza that in the subsequent "few" years we would know a classification of all Hilbert functions that occur for sets of double points in \mathbb{P}^{2}.

The Wager (with apologies to David Grann)

A celebrated theorem of Alexander and Hirschowitz says that with only a couple of exceptions, a general set of double points in \mathbb{P}^{n} has generic Hilbert function.

This result took hundreds of pages.
Undaunted, in 2000 I bet Tony Geramita a pizza that in the subsequent "few" years we would know a classification of all Hilbert functions that occur for sets of double points in \mathbb{P}^{2}.

My reasoning: well, how hard can it be?

The Wager (with apologies to David Grann)

A celebrated theorem of Alexander and Hirschowitz says that with only a couple of exceptions, a general set of double points in \mathbb{P}^{n} has generic Hilbert function.

This result took hundreds of pages.
Undaunted, in 2000 I bet Tony Geramita a pizza that in the subsequent "few" years we would know a classification of all Hilbert functions that occur for sets of double points in \mathbb{P}^{2}.

My reasoning: well, how hard can it be?
(Easiest pizza Tony ever won!)

This led to a 2006 paper with Tony and Sindi Sabourin.
This paper made a connection between the Hilbert function of the support of a set of double points and the Hilbert function of the double points.

This led to a 2006 paper with Tony and Sindi Sabourin.
This paper made a connection between the Hilbert function of the support of a set of double points and the Hilbert function of the double points.

Given any Hilbert function \underline{h} for a reduced set of points in \mathbb{P}^{2}, we

- constructed a specific set of reduced points X with Hilbert function \underline{h};
- produced the double point scheme $2 X$ supported on X using a sequence of basic double links (based on the above example);
- gave a description of the Hilbert function and Betti numbers of $2 X$.

We also discussed further questions, including some about "star configurations."

Motivated by this paper, Brian, Susan Cooper and Zach Teitler wrote

Combinatorial bounds on Hilbert functions of fat points in projective space, JPAA 215 (2011).

Motivated by this paper, Brian, Susan Cooper and Zach Teitler wrote

Combinatorial bounds on Hilbert functions of fat points in projective space, JPAA 215 (2011).

In this paper they "take an approach opposite to that presented in [16]" (GMS).

Motivated by this paper, Brian, Susan Cooper and Zach Teitler wrote

Combinatorial bounds on Hilbert functions of fat points in projective space, JPAA 215 (2011).

In this paper they "take an approach opposite to that presented in [16]" (GMS).

And so Basic Double Unlinkage is born??? Only time will tell.

Motivated by this paper, Brian, Susan Cooper and Zach Teitler wrote

Combinatorial bounds on Hilbert functions of fat points in projective space, JPAA 215 (2011).

In this paper they "take an approach opposite to that presented in [16]" (GMS).

And so Basic Double Unlinkage is born??? Only time will tell.
Anyway,

Happy Birthday, Brian, and all the best!!

