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MAIN THEOREM

Let Xn be the blow-up of P2 at n very general points.

1. For every n ⩾ 10, in the space N = Pic(Xn) ⊗ R of R-divisors,
there exist 8-dimensional spheres S such that cone(S) lies on
the boundary of the Mori cone (and of the nef cone) of Xn.

2. For every n ⩾ 13, there exist such spheres contained in K +
Xn

.

3. For every n ⩾ 13 such that n − 4 is a square, there exist such
spheres meeting F −

Xn
, where FXn =

√
n − 1H −∑n

i=1 Ei
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GENERAL BLOWUPS OF P2

PicXn = ZH ⊕ ZE1 ⊕ · · · ⊕ ZEn
Riemann-Roch problem:
given L = dH −∑

i miEi ∈ PicXn, determine h0(Xn, L)
expected : max

(
0, (d−1) (d−2)

2 −∑ m(m+1)
2

)
Effectivity problem: When is L ≠ 0? (Dually: nef classes)

Anticanonical cases: 1982, 1985, 1994, 1996, 1997...

Either h0 = expected or there is (−1)-curve C with C · L < 0
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GENERAL BLOWUPS OF P2
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RAYS AND CONES (ASYMPTOTICS IN PicXn)

N = N1(Xn) = Pic(Xn) ⊗Z R
For L ∈ N,

�
L = R⩾0 · L ⊂ N is a ray

�
L1 ·

�
L2 B sign(L1 · L2) ∈ {−, 0, +}

deg
�
L B

�
L ·
�
H

R ray effective if R =
�
L for some effective L

eg, if R rational, degR > 0 and R2 > 0 (Riemann-Roch)
Mori cone NE(Xn): closed convex cone generated by effective
rays
Nef cone Nef (Xn): dual of Mori cone

Mori’s Cone Theorem

NE(Xn) = NE(Xn)K ⩾0
n +

∑︁
E (−1)-curve

�
E
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CONE SHAPES (ANTICANONICAL CASES)

n < 8 n = 9
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10 POINTS

Q⊥
n = {L ∈ N (Xn) | L2 = LK = 0}

If E is (−1)-curve, E⊥ ∩ Q⊥
n is a single ray

(de Fernex) Q⊥
n is part of the boundary of NE(Xn) and Nef (Xn)

{(−1)-curves} ↔ {rational rays on Q⊥
n }

Every rational ray is CK-equivalent to 3H − E1 − · · · − E9
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NEFNESS ON K⊥, n > 10

Wn = ⟨H ,E1, . . . ,E10⟩ ∩ Q⊥
n ⊂ N (Xn)

(cone over 8-dim sphere)
Q⊥

n covered by subcones QE where E are (−1)-curves E on
Xn

int(QE ): non-nef classes
𝜕QE = Q⊥

n ∩ E⊥ � Q⊥
n−1

Nef locus Nef0 on Q⊥
n = (CK)-translates of 3H − E1 − · · · − E9

Nef0 = (CK)-translates of Wn

At each rational ray of Nef0, exactly n − 9 translates of Wn
meet.
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CONE SHAPES (n > 9)

n = 10 n > 10

Good ray [C MR, 2013]: non-effective rational ray R with
degR > 0, R2 = 0 and zero self-intersection.
Wonderful ray: irrational nef ray with R2 = 0
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UNOLLISION OF r2 POINTS

Lemma (Application of Ciliberto-Miranda degeneration)

Fix r ⩾ 2, n ⩾ r2 + 1, and multiplicities m, mr2+1, . . . ,mn.
If h0(Xn, dH − rmE1 − mr2+1Er2+1 − mnEn) ⩽ m then
dH − m(E1 + · · · + Er2) − mr2+1Er2+1 − mnEn is non-effective

Both classes have the same self-intersection
The nef classes on Q⊥

n have h0 = 1
Each 8-dimensional sphere of nef classes on Xn−r2+1 gives a
8-dimensional sphere of noneffective boundary classes on Xn

These intersect K positively, and sometimes F negatively
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