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Seshadri constants

Definition 1 (Demailly 1990)
Let X be an algebraic variety and let L be a nef line bundle on X . The Seshadri constant of L
at a point x ∈ X is the real number

ε(L, x) = inf
C∋x

L.C
multx (C) .

Definition 2
Let X be an algebraic variety and let L be a nef line bundle on X . The Seshadri constant of L
at a finite set of points x1, . . . , xr ∈ X is the real number

ε(L, x) = inf
C∩{x1,...,xr }≠∅

L.C∑r
i=1 multxi (C)

.
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Nagata’s Conjecture

Conjecture 1 (Nagata 1959)
Let x1, . . . , xr be general points in the complex projective plane P2 with r ≥ 10 and let
m1, . . . , mr be positive integers. Then the minimal degree d of a curve passing through the
points x1, . . . , xr with multiplicities at least mi at xi for i = 1, . . . , r is subject to the restriction

d >
1√
r

r∑
i=1

mi .

Theorem 3 (TS, 2001)
If there is a curve violating the Nagata Conjecture, then its multiplicities in all but one point
are equal.
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Seshadri fibrations

Theorem 4 (Wioletta Syzdek, TS)
Let X be a smooth projective surface, L be a nef and big line bundle on X and r ≥ 2 be a fixed
integer. If

ε(L; r) <

√
r − 1

r ·
√

L2

r ,

then there exists a fibration f : X −→ B over a curve B such that given P1, . . . , Pr ∈ X very
general, for arbitrary i = 1, . . . , r the fiber f −1(f (Pi)) computes ε(L; P1, . . . , Pr ) i.e. the fiber
is a Seshadri curve of L.
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Seshadri fibrations

Theorem 5 (Wioletta Syzdek, TS)
Let r ≥ 2 be a given integer, X a smooth projective surface and L a nef and big line bundle on
X such that

ε(L; r) =
√

r − 1
r ·

√
L2

r .

If X is not fibred by Seshadri curves for L, then
a) either r = 2, X = P2 and L = O(1),
b) or X is a surface of minimal degree in Pr and L = OX (1).
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The Primer

Tomasz Szemberg (PU Krakow) First meeting Workshop on Seshadri consants, Essen, 12-15 Februar 2008
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Recent Developments

Tomasz Szemberg (PU Krakow) First meeting MFO workshop on Linear Series, 3–9, October 2010
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The Conjecture

Conjecture 2 (Segre 1961, Harbourne 1984, Gimigliano 1987, Hirschowitz 1989)
Let Xr be the blowup of P2 at r general points x1, . . . , xr with exceptional divisors E1, . . . , Er .
Let

M = dH −
r∑

i=1
miEi ,

where H is the pull-back of the hyperplane bundle to Xr and m1, . . . , mr are positive integers.
Then

M is special if and only if it is (−1)-special.

Definition 6
Using the above notation, a linear system M is (−1)-special if there exists a (−1)-curve
C ⊂ Xr contained in the base locus of M with multiplicity at least 2.

Tomasz Szemberg (PU Krakow) SHGH Conjecture The origins
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Linking to the Nagata Conjecture
Okounkov bodies enter the stage

Conjecture 3 (SHGH, second formulation)
Let Xr be the blow up of the projective plane P2 in r general points with exceptional divisors
E1, . . . , Er . Let H denote the pullback to Xr of the hyperplane bundle. Let the integers
d , m1 ≥ · · · ≥ ms ≥ −1 with d ≥ m1 + m2 + m3 be given. Then the line bundle

dH −
r∑

i=1
miEi

is non-special.

Theorem 7 (Dumnicki, Küronya, Maclean, TS 2013)
Let r ≥ 9 be an integer for which the SHGH Conjecture holds true. Then

a) either there exists on Xr an ample line bundle whose Seshadri constant at a very general
point is irrational;

b) or the SHGH Conjecture fails for r + 1 points.

Tomasz Szemberg (PU Krakow) SHGH Conjecture Linking to the Nagata Conjecture
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Motivation and notation

1 (Elena Guardo, Brian Harbourne, Adam Van Tuyl 2011)
Symbolic powers versus regular powers of ideals of general points in P1 × P1.

Notation 1
Let Pn,r ,s,m be the Hilbert polynomial of the union of s disjoint r -dimensional flats in Pn taken
with multiplicity m.
Let Λn,r ,s(τ) be the leading term of Pn,r ,s,m(mτ). Let

en,r ,s = inf
{

t
m : t ≥ m ≥ 1, Pn,r ,s,m(t) > 0

}
,

be the expected Waldschmidt constant of the ideal of s disjoint r -dimensional flats in Pn.

Theorem 8 (Dumnicki, Harbourne, Tutaj-Gasińska, TS)
Let n, r , s be integers with n ≥ 2r + 1, r ≥ 0 and s ≥ 1. Let I be the ideal as above. Then the
polynomial Λn,r ,s(τ) has a single real root gn,r ,s bigger than or equal to 1 and

α̂(I) ≤ en,r ,s ≤ gn,r ,s .

Tomasz Szemberg (PU Krakow) Higher dimensional base loci
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MFO Research in Pairs 2013
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Monomial valuations and Nagata type Conjecture

Definition 9
Let ν be a rank 1 valuation on the field of functions of an algebraic surface S.
For a divisor D ⊂ S, define ν(D) as the value of ν on any equation of an affine part of D.
Let µD(ν) = max {ν(D′) : D′ ∈ |D|} and µ̂D(ν) = limk→∞

µkD(ν)
k .

Let Im = {f ∈ OS : ν(f ) ≥ m}.
For ν centred at a point of S = P2 there is

vol(ν) = lim
m→∞

dimC(OS/Im)
m2/2 .

Definition 10
A valuation satisfying equality in the above Theorem with D a line in P2 is called minimal.

Definition 11
For ξ(x) ∈ C[[x ]] with ξ(0) = 0 and t ≥ 1 let

ν(ξ, t; f ) = ordx (f (x , ξ(x) + θx t)),

where θ is a transcendental over C.

Conjecture 4 (Dumnicki, Harbourne, Küronya, Roe, TS 2016)
For sufficiently general ξ the valuation ν = ν(ξ, t) is minimal for t ≥ 8 + 1/36.

Tomasz Szemberg (PU Krakow) Back to the Nagata Conjecture
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The graph of µ̂(t)
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