Some constructions of unexpected hypersurfaces

Halszka Tutaj-Gasińska
Jagiellonian University, Poland

Lincoln NE, August 11-12, 2023

BrianFest

(1) Seeking for

Unexpected curves
Unexpected hypersurfaces
Unexpected hypersurfaces
(2) Some ways of finding Syzygies
Cones
Veneroni Other
(3) References

Only a few

Definition of an unexpected curve on \mathbb{P}^{2}

Given

Definition of an unexpected curve on \mathbb{P}^{2}

Given

- A set Z of pairwise different points

Given

- A set Z of pairwise different points
- A generic point P

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers d and k

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers d and k

Definition(s)

- A curve C of degree $d+1$, passing through Z and having a point of multiplicity d at P

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers d and k

Definition(s)

- A curve C of degree $d+1$, passing through Z and having a point of multiplicity d at P
is unexpected of type $(d+1, d)$ if

$$
\operatorname{dim}\left[I_{d P \cup Z}\right]_{d+1}>\max \left(0, \operatorname{dim}\left[I_{Z}\right]_{d+1}-\binom{d+1}{2}\right)
$$

Vanishing in Z imposes independent conditions on the forms of degree $d+1$.

Definition(s)

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers, d and k

Definition(s)

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers, d and k
- A curve C of degree $d+k$, passing through Z and having a point of multiplicity d at P, is unexpected of type $(d+k, d)$ if

$$
\operatorname{dim}\left[I_{d P \cup Z}\right]_{d+k}>\max \left(0, \operatorname{dim}\left[I_{Z}\right]_{d+k}-\binom{d+1}{2}\right)
$$

Vanishing in Z imposes independent conditions on the forms of degree $d+k$.

Definition of an unexpected hypersurface

Given

- A scheme Z in \mathbb{P}^{n}

Definition of an unexpected hypersurface

Given

- A scheme Z in \mathbb{P}^{n}
- General linear subspaces L_{i} with multiplicities $m_{i} \geq 0$ and a scheme $L=\bigcup m_{i} L_{i}$

Definition of an unexpected hypersurface

Given

- A scheme Z in \mathbb{P}^{n}
- General linear subspaces L_{i} with multiplicities $m_{i} \geq 0$ and a scheme $L=\bigcup m_{i} L_{i}$
- Nonnegative integer d
- $L_{d}(Z)$, space of forms of degree d vanishing on Z

Definition of an unexpected hypersurface

Given

- A scheme Z in \mathbb{P}^{n}
- General linear subspaces L_{i} with multiplicities $m_{i} \geq 0$ and a scheme $L=\bigcup m_{i} L_{i}$
- Nonnegative integer d
- $L_{d}(Z)$, space of forms of degree d vanishing on Z

Unexpected hypersurface

- A hypersurface defined by a form from $L_{d}(L \cup Z)$ is unexpected with respect to Z if

Definition of an unexpected hypersurface

Given

- A scheme Z in \mathbb{P}^{n}
- General linear subspaces L_{i} with multiplicities $m_{i} \geq 0$ and a scheme $L=\bigcup m_{i} L_{i}$
- Nonnegative integer d
- $L_{d}(Z)$, space of forms of degree d vanishing on Z

Unexpected hypersurface

- A hypersurface defined by a form from $L_{d}(L \cup Z)$ is unexpected with respect to Z if the space $L_{d}(L \cup Z)$ has
- dimension greater than 0 and
- codimension in $L_{d}(Z)$ less than is expected

How to find such a hypersurface?

How to construct/find such a hypersurface?

How to get a curve of type $(d+k, d)$

How to get a curve of type $(d+k, d)$

How to get a curve of type $(d+k, d)$

How to get a curve of type $(d+k, d)$

$\grave{\mathbb{P}}^{2}$	
$\check{Z}=\left\{l_{1}, \ldots, l_{t}\right\}, \quad f=\ell_{1} \cdots \ell_{t}$	$Z=\left\{P_{1}, \ldots, P_{t}\right\}$
$L: \alpha a+\beta b+\gamma c=0$	$\check{L}=P_{L}=(\alpha, \beta, \gamma)$

How to get a curve of type $(d+k, d)$

$\stackrel{\rightharpoonup}{P}^{2}$	\mathbb{P}^{2}
$\check{Z}=\left\{I_{1}, \ldots, I_{t}\right\}, \quad f=\ell_{1} \cdots \ell_{t}$	$Z=\left\{P_{1}, \ldots, P_{t}\right\}$
$L: \alpha a+\beta b+\gamma c=0$	$\check{L}=P_{L}=(\alpha, \beta, \gamma)$
$\left(g_{k, 0,0}, \ldots, g_{0,0, k}, g\right)$	$S_{Q}(x, y, z):=$
a syzygy of $\left(f_{a}, f_{b}, f_{c}\right)^{k}+(L)$ and	$g_{k, 0,0}(Q) x^{k}+g_{k-1,1,0}(Q) x^{k-1} y+\cdots+$
$\operatorname{deg}\left(g_{i_{1}, i_{2}, i_{3}}\right)=d$	$g_{0,0, k}(Q) z^{k}$

How to get a curve of type $(d+k, d)$

\ddot{P}^{2}	\mathbb{P}^{2}
$\ddot{Z}=\left\{I_{1}, \ldots, I_{t}\right\}, \quad f=\ell_{1} \cdots \ell_{t}$	$Z=\left\{P_{1}, \ldots, P_{t}\right\}$
$L: \alpha a+\beta b+\gamma c=0$	$L=P_{L}=(\alpha, \beta, \gamma)$
$\left(g_{k, 0,0}, \ldots, g_{0,0, k}, g\right)$	$S_{Q}(x, y, z):=$
a syzygy of $\left(f_{a}, f_{b}, f_{c}\right)^{k}+(L)$ and	$g_{k, 0,0}(Q) x^{k}+g_{k-1,1,0}(Q) x^{k-1} y+\cdots+$
$\operatorname{deg}\left(g_{i_{1}, i_{2}, i_{3}}\right)=d$	$g_{0,0, k}(Q) z^{k}$
$Q=(a, b, c) \in L$	$L_{Q}=a x+b y+c z$

How to get a curve of type $(d+k, d)$

\ddot{P}^{2}	\mathbb{P}^{2}
$\ddot{Z}=\left\{I_{1}, \ldots, I_{t}\right\}, \quad f=\ell_{1} \cdots \ell_{t}$	$Z=\left\{P_{1}, \ldots, P_{t}\right\}$
$L: \alpha a+\beta b+\gamma c=0$	$L=P_{L}=(\alpha, \beta, \gamma)$
$\left(g_{k, 0,0}, \ldots, g_{0,0, k}, g\right)$	$S_{Q}(x, y, z):=$
a syzygy of $\left(f_{a}, f_{b}, f_{c}\right)^{k}+(L)$ and	$g_{k, 0,0}(Q) x^{k}+g_{k-1,1,0}(Q) x^{k-1} y+\cdots+$
$\operatorname{deg}\left(g_{i_{1}, i_{2}, i_{3}}\right)=d$	$g_{0,0, k}(Q) z^{k}$
$Q=(a, b, c) \in L$	$L_{Q}=a x+b y+c z$

$$
\left\{L_{Q}=0\right\} \cap\left\{S_{Q}=0\right\}
$$

- The curves $L_{Q}=0, S_{Q}=0$ intersect (in general) in a finite set of points, giving a map: $L \rightarrow \mathbb{P}^{2}$
- The curves $L_{Q}=0, S_{Q}=0$ intersect (in general) in a finite set of points, giving a map: $L \rightarrow \mathbb{P}^{2}$
- If Q moves along L, then these points move along a curve C of degree $d+k$
- The curves $L_{Q}=0, S_{Q}=0$ intersect (in general) in a finite set of points, giving a map: $L \rightarrow \mathbb{P}^{2}$
- If Q moves along L, then these points move along a curve C of degree $d+k$
- C passes through points of Z and mult $_{p_{L}} C=d$

[CHMN] Syzygies \& splitting type

- iff conditions?

Theorem

Let $Z \subset \mathbb{P}^{2}$ be a finite set of points whose dual is a line arrangement with splitting type (a, b). Let P be a general point. Then the subscheme $X=m P$ fails to impose the expected number of conditions on $\left[I_{z}\right]_{m+1}$ if and only if
(i) $a \leq m \leq b-2$; and
(ii) $h^{1}\left(\mathcal{I}_{Z}\left(t_{Z}\right)\right)=0$,
where $t_{Z}:=\min \left\{j \geq 0: h^{0}\left(\mathcal{I}_{Z}(j+1)\right)-\binom{j+1}{2}>0\right\}$.

Cones

Cones

Cones

- Some cones are unexpected

Cones

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)
- Cone $C_{\lambda}(V)$ over V with vertex λ is the union of all lines through a point of λ and a point of V

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)
- Cone $C_{\lambda}(V)$ over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- $V \subset \mathbb{P}^{n}$ - reduced, equidimensional, non-degenerate subvariety of dimension e $(1 \leq e \leq n-2)$ and degree d

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)
- Cone $C_{\lambda}(V)$ over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- $V \subset \mathbb{P}^{n}$ - reduced, equidimensional, non-degenerate subvariety of dimension e $(1 \leq e \leq n-2)$ and degree d
- λ be a general linear space of codimension $e+2$

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)
- Cone $C_{\lambda}(V)$ over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- $V \subset \mathbb{P}^{n}$ - reduced, equidimensional, non-degenerate subvariety of dimension e $(1 \leq e \leq n-2)$ and degree d
- λ be a general linear space of codimension $e+2$
- Then $C_{\lambda}(V)$ is a hypersurface of degree d vanishing to order d on λ and containing V

Cones

- $V \subset \mathbb{P}^{n}$ of dimension e, where $1 \leq e \leq n-2$
- linear variety λ of codimension $e+2$ (disjoint with V)
- Cone $C_{\lambda}(V)$ over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- $V \subset \mathbb{P}^{n}$ - reduced, equidimensional, non-degenerate subvariety of dimension e $(1 \leq e \leq n-2)$ and degree d
- λ be a general linear space of codimension $e+2$
- Then $C_{\lambda}(V)$ is a hypersurface of degree d vanishing to order d on λ and containing V
- $C_{\lambda}(V)$ is unexpected.

Veneroni map

Veneroni map

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}
(2) Take the linear system of all forms of degree n vanishing on $\Pi_{1}, \ldots, \Pi_{n+1}$

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}
(2) Take the linear system of all forms of degree n vanishing on $\Pi_{1}, \ldots, \Pi_{n+1}$
(3) It has dimension $n+1$

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}
(2) Take the linear system of all forms of degree n vanishing on $\Pi_{1}, \ldots, \Pi_{n+1}$
(3) It has dimension $n+1$
4. It defines a rational map $v_{n}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}
(2) Take the linear system of all forms of degree n vanishing on $\Pi_{1}, \ldots, \Pi_{n+1}$
(3) It has dimension $n+1$
4. It defines a rational map $v_{n}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$
(5) v_{n} is birational and self-inverse

Veneroni map, what it is

(1) Consider $n+1$ general linear subspaces $\Pi_{1}, \ldots, \Pi_{n+1}$ of codimension 2 in \mathbb{P}^{n}
(2) Take the linear system of all forms of degree n vanishing on $\Pi_{1}, \ldots, \Pi_{n+1}$
(3) It has dimension $n+1$
4. It defines a rational map $v_{n}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$
(5) v_{n} is birational and self-inverse
(6) Base locus of v_{n} consists of all the Π_{j} and all common transversals to them

- Take the linear system of surfaces of degree 7 vanishing on 7 general lines Π_{j} :

$$
S=7 H-\Pi_{1}-\cdots-\Pi_{4}
$$

- Take the linear system of surfaces of degree 7 vanishing on 7 general lines Π_{j} :

$$
S=7 H-\Pi_{1}-\cdots-\Pi_{4}
$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_{1}+\cdots+\Pi_{4}$ is 32
- Take the linear system of surfaces of degree 7 vanishing on 7 general lines Π_{j} :

$$
S=7 H-\Pi_{1}-\cdots-\Pi_{4}
$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_{1}+\cdots+\Pi_{4}$ is 32
- Thus $\operatorname{vdim}(S)=88=\operatorname{adim}(S)$ by $[H H]$
- Pulling S back by v_{3}^{-1} gives the linear system

$$
S^{\prime}=13 H-4 \Pi_{1}-\cdots-4 \Pi_{4}
$$

- Take the linear system of surfaces of degree 7 vanishing on 7 general lines Π_{j} :

$$
S=7 H-\Pi_{1}-\cdots-\Pi_{4}
$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_{1}+\cdots+\Pi_{4}$ is 32
- Thus $\operatorname{vdim}(S)=88=\operatorname{adim}(S)$ by $[H H]$
- Pulling S back by v_{3}^{-1} gives the linear system

$$
S^{\prime}=13 H-4 \Pi_{1}-\cdots-4 \Pi_{4}
$$

- Each $4 \Pi_{j}$ imposes 120 conditions on forms of degree 13, [DHST] so in total 480
- Thus $\operatorname{adim}\left(S^{\prime}\right)-\operatorname{vdim}\left(S^{\prime}\right)=\operatorname{adim}(S)-\operatorname{vdim}\left(S^{\prime}\right)=8$
- Take the linear system of surfaces of degree 7 vanishing on 7 general lines Π_{j} :

$$
S=7 H-\Pi_{1}-\cdots-\Pi_{4}
$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_{1}+\cdots+\Pi_{4}$ is 32
- Thus $\operatorname{vdim}(S)=88=\operatorname{adim}(S)$ by $[H H]$
- Pulling S back by v_{3}^{-1} gives the linear system

$$
S^{\prime}=13 H-4 \Pi_{1}-\cdots-4 \Pi_{4}
$$

- Each $4 \Pi_{j}$ imposes 120 conditions on forms of degree 13, [DHST] so in total 480
- Thus $\operatorname{adim}\left(S^{\prime}\right)-\operatorname{vdim}\left(S^{\prime}\right)=\operatorname{adim}(S)-\operatorname{vdim}\left(S^{\prime}\right)=8$
- so S^{\prime} is unexpected.
- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5} .
$$

Veneroni - Cremona map, example in \mathbb{P}^{4}

- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5} .
$$

- Each $3 \Pi_{j}$ imposes separately 521 conditions on forms of degree 13, for a total of 2605.

Veneroni - Cremona map, example in \mathbb{P}^{4}

- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5} .
$$

- Each $3 \Pi_{j}$ imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each $3 \Pi_{j}$ and $3 \Pi_{i}$ reduces this by 36.

Veneroni - Cremona map, example in \mathbb{P}^{4}

- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5}
$$

- Each $3 \Pi_{j}$ imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each $3 \Pi_{j}$ and $3 \Pi_{i}$ reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.

Veneroni - Cremona map, example in \mathbb{P}^{4}

- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5}
$$

- Each $3 \Pi_{j}$ imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each $3 \Pi_{j}$ and $3 \Pi_{i}$ reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.
- Thus $\operatorname{adim}\left(S^{\prime}\right)-\operatorname{vdim}\left(S^{\prime}\right)=\operatorname{adim}(S)-\operatorname{vdim}\left(S^{\prime}\right)=25$,

Veneroni - Cremona map, example in \mathbb{P}^{4}

- Take $S=7 H-\Pi_{1}-\cdots-\Pi_{5}$ in \mathbb{P}^{4}
- $\operatorname{vdim}(S)=160$, which is equal to $\operatorname{adim}(S)$ (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_{4}^{-1} gives

$$
S^{\prime}=13 H-3 \Pi_{1}-\cdots-3 \Pi_{5}
$$

- Each $3 \Pi_{j}$ imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each $3 \Pi_{j}$ and $3 \Pi_{i}$ reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.
- Thus $\operatorname{adim}\left(S^{\prime}\right)-\operatorname{vdim}\left(S^{\prime}\right)=\operatorname{adim}(S)-\operatorname{vdim}\left(S^{\prime}\right)=25$,
- so S^{\prime} is unexpected.

Funny duodectic

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^{4}

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^{4}
- $Y=\phi(X)$ is a quartic threefold

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^{4}
- $Y=\phi(X)$ is a quartic threefold
- $C=\phi\left(\ell_{7}\right)$ (rational quartic)

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^{4}
- $Y=\phi(X)$ is a quartic threefold
- $C=\phi\left(\ell_{7}\right)$ (rational quartic)
- T a threefold of secants to $C, \operatorname{deg} T=3, T$ singular in C

Funny duodectic

- Take in \mathbb{P}^{3} surfaces of degree 12 and 7 general lines $\ell_{1}, \ldots, \ell_{7}$
- A surface of degree 12 , triple along 6 lines and singular along the seventh should not exist (vdim $=-2$)
- But it does! Why?
- Take a blowup X of \mathbb{P}^{3} along six lines, $\ell_{1}, \ldots, \ell_{6}$
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^{4}
- $Y=\phi(X)$ is a quartic threefold
- $C=\phi\left(\ell_{7}\right)$ (rational quartic)
- T a threefold of secants to $C, \operatorname{deg} T=3, T$ singular in C
- $D:=\phi^{*}(T \cap Y)$ is the duodectic.
- Cook II, D., Harbourne, B., Migliore, J., Nagel, U.: Line arrangements and configurations of points with an unusual geometric property, Compositio Math. 154 (2018) 2150-2194
- Dumnicki, M., Farnik, Ł., Harbourne, B., Malara, G., Szpond, J., Tutaj-Gasińska, H:A matrixwise approach to unexpected surfaces, Linear Algebra Appl. vol. 592 (2020), 113-133
- Dumnicki, M., Harbourne, B., Roe, J., Szemberg, T., Tutaj-Gasińska, H.: Unexpected surfaces singular on lines in \mathbb{P}^{3}, European Journal of Mathematics, 17 Nov. 2020
- Dumnicki, M., Harbourne, B., Szemberg, T., Tutaj-Gasińska, H.: Linear subspaces,symbolic powers and Nagata type conjectures, Adv. in Math. 252 471?491 (2014)
- Favacchio, G., Guardo, E., Harbourne, B., Migliore, J.: Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces, Adv. in Math., 388 (2021)
- Harbourne, B., Migliore, J., Nagel, U., Teitler, Z.: Unexpected hypersurfaces and where to find them, Michigan Math. J. 70 (2020), 301-339
- Harbourne, B., Migliore, J., Tutaj-Gasińska, H.: New constructions of unexpected hypersurfaces in \mathbb{P}^{n}, Rev. Mat. Complut. (2020), 18p. (Published: 09 January 2020)
- Malara, G., Tutaj-Gasińska, H.: On unexpected curves of type $(d+k, d)$, arXiv:2109.00769
- THANK YOU!

All the best, Brian!

Coser

