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Definition of an unexpected curve on P?

Definition(s)

Given

A set Z of pairwise different points
¢ A generic point P

Nonnegative integers, d and k

A curve C of degree d + k, passing through Z and having
a point of multiplicity d at P, is unexpected of type
(d + k,d) if

. ) d+1
dim[lgpuz]a+k > max <0,dlm[/z]d+k - ( 5 ))

Vanishing in Z imposes independent conditions on the
forms of degree d + k.
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Definition of an unexpected hypersurface

Given
e A scheme ZinP"

e General linear subspaces L; with multiplicities m; > 0 and
a scheme L = |JmL;

¢ Nonnegative integer d
* [4(2), space of forms of degree d vanishing on Z

Unexpected hypersurface
¢ A hypersurface defined by a form from Ly(LU Z) is
unexpected with respect to Z if the space Ly(L U Z) has

— dimension greater than 0 and
— codimension in Ly(Z) less than is expected
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P2 P?
Z—{h, .k}, f=t1-ts Z—{P,...,P}
L:aa+pBb+~vc=0 [:PL:(a,ﬁ,'y)
(9k,0,05---+90,0,k:9) So(x,y,2) ==
a syzygy of (fa,fo, o) + (L) and | gk00(QXK + gk—1,10(Qx Ty + -+ +
deg(Gi,ip,i5) = d 90,0,4(Q)Z¥
Q= (ab,c)elL Log=ax+by+cz

{La =0} N{Sq =0}
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What goes on

® The curves Lq = 0, Sq = 0 intersect (in general) in a finite
set of points, giving a map: L — P?

¢ |f @ moves along L, then these points move along a curve
C of degree d + k

® C passes through points of Z and multp, C = d
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[CHMN] Syzygies & splitting type

o iff conditions?

Theorem
Let Z c P? be a finite set of points whose dual is a line
arrangement with splitting type (a, b). Let P be a general point.
Then the subscheme X = mP fails to impose the expected
number of conditions on [I7]m1 if and only if

(i) a<m<b-2; and

(i) h'(Zz(tz)) =0, ,
where tz := min {j >0 : h(Zz(j + 1)) - (3') > 0}.
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Cones
e V C P" of dimension e, where 1 <e<n-2
e linear variety A of codimension e + 2 (disjoint with V)

e Cone Cy(V) over V with vertex X is the union of all lines
through a point of A and a point of V

Theorem

e V C P" — reduced, equidimensional, non-degenerate
subvariety of dimension e (1 < e < n— 2) and degree d

® )\ be a general linear space of codimension e + 2

e Then C\(V) is a hypersurface of degree d vanishing to
order d on \ and containing V

e C\(V) is unexpected.
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Veneroni map, what it is

© Consider n+ 1 general linear subspaces Iy, ..., My, 1 of
codimension 2 in P"

@ Take the linear system of all forms of degree n vanishing
on ”1,...,|_|n+1

©® It has dimension n+ 1
O It defines a rational map v, : P --» P"
©® v, is birational and self-inverse

® Base locus of vj, consists of all the M; and all common
transversals to them
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¢ Take the linear system of surfaces of degree 7 vanishing
on 7 general lines ;:

S=7H-MNy—---—T,4

¢ The expected number of conditions imposed on forms of
degree 7 by vanishing on My + - -+ + Iy is 32

¢ Thus vdim(S) = 88 = adim(S) by [HH]

e Pulling S back by v3‘1 gives the linear system

S =13H — 4Ny — - — 4,

* Each 4I; imposes 120 conditions on forms of degree 13,
[DHST] so in total 480

¢ Thus adim(S’) — vdim(S’) = adim(S) — vdim(S’) = 8
e so S’ is unexpected.
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Veneroni — Cremona map, example in P*

e Take S=7H-MNy —---— Mg inP*

¢ vdim(S) = 160, which is equal to adim(S) (checked by
Singular and Macaulay?2), hence S has the expected
dimension.

* Pulling S back by v, ' gives

S =13H -3My —--- — 3s.

¢ Each 3I1; imposes separately 521 conditions on forms of
degree 13, for a total of 2605.

¢ But! The nonempty intersection of each 3I1; and 3[1;
reduces this by 36.

¢ Thus the triple hyperplanes impose 2245 conditions.
¢ Thus adim(S’) — vdim(S’) = adim(S) — vdim(S’) = 25,
e so S’ is unexpected.
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Funny duodectic

e Take in P° surfaces of degree 12 and 7 general lines
by,... 07

A surface of degree 12, triple along 6 lines and singular
along the seventh should not exist (vdim = —2)

But it does! Why?

e Take a blowup X of P2 along six lines, ¢1, ...,/
* The anticanonical system on this blowup gives a morphism
¢ to P*

Y = ¢(X) is a quartic threefold

C = ¢(¢7) (rational quartic)

T athreefold of secants to C, degT = 3, T singularin C
D := ¢*(T NnY) is the duodectic.
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e THANK YOU!



All the best, Brian!
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