Some constructions of unexpected hypersurfaces

Halszka Tutaj-Gasińska

Jagiellonian University, Poland

Lincoln NE, August 11-12, 2023

BrianFest

Outline

1 Seeking for

Unexpected curves Unexpected hypersurfaces Unexpected hypersurfaces

2 Some ways of finding

Syzygies Cones Veneroni Other

• A set Z of pairwise different points

- A set Z of pairwise different points
- A generic point P

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers *d* and *k*

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers d and k

Definition(s)

• A curve *C* of degree *d* + 1, passing through *Z* and having a point of multiplicity *d* at *P*

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers d and k

Definition(s)

 A curve C of degree d + 1, passing through Z and having a point of multiplicity d at P is unexpected of type (d + 1, d) if

$$\dim[I_{dP\cup Z}]_{d+1} > \max\left(0, \dim[I_Z]_{d+1} - \binom{d+1}{2}\right)$$

Vanishing in Z imposes independent conditions on the forms of degree d + 1.

Definition(s)

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers, *d* and *k*

Definition(s)

Given

- A set Z of pairwise different points
- A generic point P
- Nonnegative integers, *d* and *k*
- A curve C of degree d + k, passing through Z and having a point of multiplicity d at P, is unexpected of type (d + k, d) if

$$\dim[I_{dP\cup Z}]_{d+k} > \max\left(0, \dim[I_Z]_{d+k} - \binom{d+1}{2}\right)$$

Vanishing in Z imposes independent conditions on the forms of degree d + k.

• A scheme Z in \mathbb{P}^n

- A scheme Z in \mathbb{P}^n
- General linear subspaces L_i with multiplicities $m_i \ge 0$ and a scheme $L = \bigcup m_i L_i$

- A scheme Z in \mathbb{P}^n
- General linear subspaces L_i with multiplicities $m_i \ge 0$ and a scheme $L = \bigcup m_i L_i$
- Nonnegative integer d
- $L_d(Z)$, space of forms of degree *d* vanishing on *Z*

- A scheme Z in \mathbb{P}^n
- General linear subspaces *L_i* with multiplicities *m_i* ≥ 0 and a scheme *L* = ∪ *m_iL_i*
- Nonnegative integer d
- $L_d(Z)$, space of forms of degree *d* vanishing on *Z*

Unexpected hypersurface

 A hypersurface defined by a form from L_d(L∪Z) is unexpected with respect to Z if

- A scheme Z in \mathbb{P}^n
- General linear subspaces L_i with multiplicities $m_i \ge 0$ and a scheme $L = \bigcup m_i L_i$
- Nonnegative integer d
- $L_d(Z)$, space of forms of degree *d* vanishing on *Z*

Unexpected hypersurface

- A hypersurface defined by a form from L_d(L∪Z) is unexpected with respect to Z if the space L_d(L∪Z) has
 - dimension greater than 0 and
 - codimension in $L_d(Z)$ less than is expected

How to construct/find such a hypersurface?

How to get a curve of type (d + k, d)

How to get a curve of type (d + k, d)

Ď²	\mathbb{P}^2
$\check{Z} = \{I_1, \ldots, I_t\}, f = \ell_1 \cdots \ell_t$	$Z = \{P_1, \ldots, P_t\}$
$L: \alpha \boldsymbol{a} + \beta \boldsymbol{b} + \gamma \boldsymbol{c} = \boldsymbol{0}$	$\check{L} = P_L = (\alpha, \beta, \gamma)$

Ď²	\mathbb{P}^2
$\check{Z} = \{I_1, \ldots, I_t\}, f = \ell_1 \cdots \ell_t$	$Z = \{P_1, \ldots, P_t\}$
$L: \alpha \boldsymbol{a} + \beta \boldsymbol{b} + \gamma \boldsymbol{c} = \boldsymbol{0}$	$\check{L} = P_L = (\alpha, \beta, \gamma)$
$(g_{k,0,0},\ldots,g_{0,0,k},g)$	$S_Q(x,y,z) :=$
a syzygy of $(f_a, f_b, f_c)^k + (L)$ and $\deg(g_{i_1, i_2, i_3}) = d$	$\begin{vmatrix} g_{k,0,0}(Q)x^k + g_{k-1,1,0}(Q)x^{k-1}y + \cdots + \\ g_{0,0,k}(Q)z^k \end{vmatrix}$

Ď²	\mathbb{P}^2
$\check{Z} = \{I_1, \ldots, I_t\}, f = \ell_1 \cdots \ell_t$	$Z = \{P_1, \ldots, P_t\}$
$L: \alpha a + \beta b + \gamma c = 0$	$\tilde{L} = P_L = (\alpha, \beta, \gamma)$
$(g_{k,0,0},\ldots,g_{0,0,k},g)$	$S_Q(x,y,z) :=$
a syzygy of $(f_a, f_b, f_c)^k + (L)$ and $\deg(g_{i_1, i_2, i_3}) = d$	$\begin{vmatrix} g_{k,0,0}(Q)x^k + g_{k-1,1,0}(Q)x^{k-1}y + \cdots + \\ g_{0,0,k}(Q)z^k \end{vmatrix}$
$Q = (a, b, c) \in L$	$L_Q = ax + by + cz$

Ď²	\mathbb{P}^2
$\check{Z} = \{I_1, \ldots, I_t\}, f = \ell_1 \cdots \ell_t$	$Z = \{P_1, \ldots, P_t\}$
$L: \alpha a + \beta b + \gamma c = 0$	$L = P_L = (\alpha, \beta, \gamma)$
$(g_{k,0,0},\ldots,g_{0,0,k},g)$	$S_Q(x,y,z) :=$
a syzygy of $(f_a, f_b, f_c)^k + (L)$ and $\deg(g_{i_1, i_2, i_3}) = d$	$\begin{vmatrix} g_{k,0,0}(Q)x^k + g_{k-1,1,0}(Q)x^{k-1}y + \cdots + \\ g_{0,0,k}(Q)z^k \end{vmatrix}$
$Q = (a, b, c) \in L$	$L_Q = ax + by + cz$

$$\{L_Q = 0\} \cap \{S_Q = 0\}$$

The curves L_Q = 0, S_Q = 0 intersect (in general) in a finite set of points, giving a map: L → P²

- The curves L_Q = 0, S_Q = 0 intersect (in general) in a finite set of points, giving a map: L → P²
- If *Q* moves along *L*, then these points move along a curve *C* of degree *d* + *k*

- The curves L_Q = 0, S_Q = 0 intersect (in general) in a finite set of points, giving a map: L → P²
- If Q moves along L, then these points move along a curve C of degree d + k
- *C* passes through points of *Z* and $\operatorname{mult}_{P_L} C = d$

B3 example

B3 example - animation

• iff conditions?

Theorem

Let $Z \subset \mathbb{P}^2$ be a finite set of points whose dual is a line arrangement with splitting type (a, b). Let P be a general point. Then the subscheme X = mP fails to impose the expected number of conditions on $[I_Z]_{m+1}$ if and only if

(i)
$$a \le m \le b - 2$$
; and
(ii) $h^1(\mathcal{I}_Z(t_Z)) = 0$,
where $t_Z := \min \{j \ge 0 : h^0(\mathcal{I}_Z(j+1)) - {j+1 \choose 2} > 0\}$.

٠

• Some cones are unexpected

• $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)
- Cone C_λ(V) over V with vertex λ is the union of all lines through a point of λ and a point of V

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)
- Cone C_λ(V) over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

V ⊂ Pⁿ – reduced, equidimensional, non-degenerate subvariety of dimension e (1 ≤ e ≤ n − 2) and degree d

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)
- Cone C_λ(V) over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- V ⊂ Pⁿ reduced, equidimensional, non-degenerate subvariety of dimension e (1 ≤ e ≤ n − 2) and degree d
- λ be a general linear space of codimension e + 2

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)
- Cone C_λ(V) over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- V ⊂ ℙⁿ reduced, equidimensional, non-degenerate subvariety of dimension e (1 ≤ e ≤ n − 2) and degree d
- λ be a general linear space of codimension e + 2
- Then C_λ(V) is a hypersurface of degree d vanishing to order d on λ and containing V

- $V \subset \mathbb{P}^n$ of dimension *e*, where $1 \le e \le n-2$
- linear variety λ of codimension e + 2 (disjoint with V)
- Cone C_λ(V) over V with vertex λ is the union of all lines through a point of λ and a point of V

Theorem

- V ⊂ ℙⁿ reduced, equidimensional, non-degenerate subvariety of dimension e (1 ≤ e ≤ n − 2) and degree d
- λ be a general linear space of codimension e + 2
- Then C_λ(V) is a hypersurface of degree d vanishing to order d on λ and containing V
- $C_{\lambda}(V)$ is unexpected.

Veneroni map

Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ

- Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ
- 2 Take the linear system of all forms of degree *n* vanishing on Π₁,..., Π_{n+1}

- Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ
- 2 Take the linear system of all forms of degree *n* vanishing on Π₁,..., Π_{n+1}
- **3** It has dimension n + 1

- Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ
- 2 Take the linear system of all forms of degree *n* vanishing on Π₁,..., Π_{n+1}
- **3** It has dimension n + 1
- **4** It defines a rational map $v_n : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$

- Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ
- 2 Take the linear system of all forms of degree *n* vanishing on Π₁,..., Π_{n+1}
- **3** It has dimension n+1
- **4** It defines a rational map $v_n : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$
- **5** v_n is birational and self-inverse

- Consider *n* + 1 general linear subspaces Π₁,..., Π_{n+1} of codimension 2 in Pⁿ
- 2 Take the linear system of all forms of degree *n* vanishing on Π₁,..., Π_{n+1}
- **3** It has dimension n + 1
- **4** It defines a rational map $v_n : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$
- **5** v_n is birational and self-inverse
- **6** Base locus of v_n consists of all the Π_j and all common transversals to them

$$S = 7H - \Pi_1 - \cdots - \Pi_4$$

$$S = 7H - \Pi_1 - \cdots - \Pi_4$$

 The expected number of conditions imposed on forms of degree 7 by vanishing on Π₁ + · · · + Π₄ is 32

$$S = 7H - \Pi_1 - \cdots - \Pi_4$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_1 + \dots + \Pi_4$ is 32
- Thus vdim(S) = 88 = adim(S) by [HH]
- Pulling *S* back by v_3^{-1} gives the linear system

$$S' = 13H - 4\Pi_1 - \cdots - 4\Pi_4$$

$$S = 7H - \Pi_1 - \cdots - \Pi_4$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_1 + \dots + \Pi_4$ is 32
- Thus vdim(S) = 88 = adim(S) by [HH]
- Pulling *S* back by v_3^{-1} gives the linear system

$$S' = 13H - 4\Pi_1 - \cdots - 4\Pi_4$$

- Each 4Π_j imposes 120 conditions on forms of degree 13, [DHST] so in total 480
- Thus $\operatorname{adim}(S') \operatorname{vdim}(S') = \operatorname{adim}(S) \operatorname{vdim}(S') = 8$

$$S = 7H - \Pi_1 - \cdots - \Pi_4$$

- The expected number of conditions imposed on forms of degree 7 by vanishing on $\Pi_1 + \dots + \Pi_4$ is 32
- Thus vdim(S) = 88 = adim(S) by [HH]
- Pulling *S* back by v_3^{-1} gives the linear system

$$S' = 13H - 4\Pi_1 - \cdots - 4\Pi_4$$

- Each 4Π_j imposes 120 conditions on forms of degree 13, [DHST] so in total 480
- Thus $\operatorname{adim}(S') \operatorname{vdim}(S') = \operatorname{adim}(S) \operatorname{vdim}(S') = 8$
- so S' is unexpected.

• Take
$$S = 7H - \Pi_1 - \cdots - \Pi_5$$
 in \mathbb{P}^4

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(*S*) = 160, which is equal to adim(*S*) (checked by Singular and Macaulay2), hence *S* has the expected dimension.

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(S) = 160, which is equal to adim(S) (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(*S*) = 160, which is equal to adim(*S*) (checked by Singular and Macaulay2), hence *S* has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

 Each 3Π_j imposes separately 521 conditions on forms of degree 13, for a total of 2605.

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(S) = 160, which is equal to adim(S) (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

- Each 3Π_j imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each 3Π_j and 3Π_i reduces this by 36.

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(S) = 160, which is equal to adim(S) (checked by Singular and Macaulay2), hence S has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

- Each 3Π_j imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each 3Π_j and 3Π_i reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(*S*) = 160, which is equal to adim(*S*) (checked by Singular and Macaulay2), hence *S* has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

- Each 3Π_j imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each 3Π_j and 3Π_i reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.
- Thus $\operatorname{adim}(S') \operatorname{vdim}(S') = \operatorname{adim}(S) \operatorname{vdim}(S') = 25$,

- Take $S = 7H \Pi_1 \cdots \Pi_5$ in \mathbb{P}^4
- vdim(*S*) = 160, which is equal to adim(*S*) (checked by Singular and Macaulay2), hence *S* has the expected dimension.
- Pulling S back by v_4^{-1} gives

$$S' = 13H - 3\Pi_1 - \cdots - 3\Pi_5.$$

- Each 3Π_j imposes separately 521 conditions on forms of degree 13, for a total of 2605.
- But! The nonempty intersection of each 3Π_j and 3Π_i reduces this by 36.
- Thus the triple hyperplanes impose 2245 conditions.
- Thus $\operatorname{adim}(S') \operatorname{vdim}(S') = \operatorname{adim}(S) \operatorname{vdim}(S') = 25$,
- so S' is unexpected.

Funny duodectic

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^4

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^4
- $Y = \phi(X)$ is a quartic threefold

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^4
- $Y = \phi(X)$ is a quartic threefold
- $C = \phi(\ell_7)$ (rational quartic)

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^4
- $Y = \phi(X)$ is a quartic threefold
- $C = \phi(\ell_7)$ (rational quartic)
- T a threefold of secants to C, deg T = 3, T singular in C

- Take in \mathbb{P}^3 surfaces of degree 12 and 7 general lines ℓ_1,\ldots,ℓ_7
- A surface of degree 12, triple along 6 lines and singular along the seventh should not exist (vdim = -2)
- But it does! Why?
- Take a blowup X of \mathbb{P}^3 along six lines, ℓ_1, \ldots, ℓ_6
- The anticanonical system on this blowup gives a morphism ϕ to \mathbb{P}^4
- $Y = \phi(X)$ is a quartic threefold
- $C = \phi(\ell_7)$ (rational quartic)
- T a threefold of secants to C, deg T = 3, T singular in C
- $D := \phi^*(T \cap Y)$ is the duodectic.

- Cook II, D., Harbourne, B., Migliore, J., Nagel, U.: Line arrangements and configurations of points with an unusual geometric property, Compositio Math. 154 (2018) 2150–2194
- Dumnicki, M., Farnik, Ł., Harbourne, B., Malara, G., Szpond, J., Tutaj-Gasińska, H:*A matrixwise approach to unexpected surfaces*, Linear Algebra Appl. vol. 592 (2020), 113-133
- Dumnicki, M., Harbourne, B., Roe, J., Szemberg, T., Tutaj-Gasińska, H.:*Unexpected surfaces singular on lines in* ℙ³, European Journal of Mathematics, 17 Nov. 2020
- Dumnicki, M., Harbourne, B., Szemberg, T., Tutaj-Gasińska, H.: Linear subspaces,symbolic powers and Nagata type conjectures, Adv. in Math. 252 471?491 (2014)
- Favacchio, G., Guardo, E., Harbourne, B., Migliore, J.: Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces, Adv. in Math., 388 (2021)
- Harbourne, B., Migliore, J., Nagel, U., Teitler, Z.: Unexpected hypersurfaces and where to find them, Michigan Math. J. 70 (2020), 301–339
- Harbourne, B., Migliore, J., Tutaj-Gasińska, H.: New constructions of unexpected hypersurfaces in ℙⁿ, Rev. Mat. Complut. (2020), 18p. (Published: 09 January 2020)
- Malara, G., Tutaj-Gasińska, H.: On unexpected curves of type (d + k, d), arXiv:2109.00769

Thank you

• THANK YOU!

All the best, Brian!

