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Definition of an unexpected curve on P2

Given

• A set Z of pairwise different points
• A generic point P
• Nonnegative integers d and k

Definition(s)
• A curve C of degree d + 1, passing through Z and having

a point of multiplicity d at P
is unexpected of type (d + 1,d) if

dim[IdP∪Z ]d+1 > max

(
0, dim[IZ ]d+1 −

(
d + 1

2

))
Vanishing in Z imposes independent conditions on the

forms of degree d + 1.
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Definition of an unexpected curve on P2

Definition(s)

Given
• A set Z of pairwise different points
• A generic point P
• Nonnegative integers, d and k

• A curve C of degree d + k , passing through Z and having
a point of multiplicity d at P, is unexpected of type
(d + k ,d) if

dim[IdP∪Z ]d+k > max

(
0, dim[IZ ]d+k −

(
d + 1

2

))
Vanishing in Z imposes independent conditions on the
forms of degree d + k .
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Definition of an unexpected hypersurface

Given
• A scheme Z in Pn

• General linear subspaces Li with multiplicities mi ≥ 0 and
a scheme L =

⋃
miLi

• Nonnegative integer d
• Ld(Z ), space of forms of degree d vanishing on Z

Unexpected hypersurface
• A hypersurface defined by a form from Ld(L ∪ Z ) is

unexpected with respect to Z if the space Ld(L ∪ Z ) has
– dimension greater than 0 and
– codimension in Ld (Z ) less than is expected
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How to find such a hypersurface?

How to construct/find such a hypersurface?
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P̌2 P2

Ž = {l1, . . . , lt}, f = ℓ1 · · · ℓt Z = {P1, . . . ,Pt}

L : αa + βb + γc = 0 Ľ = PL = (α, β, γ)
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What goes on

• The curves LQ = 0, SQ = 0 intersect (in general) in a finite
set of points, giving a map: L → P2

• If Q moves along L, then these points move along a curve
C of degree d + k

• C passes through points of Z and multPLC = d
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[CHMN] Syzygies & splitting type

• iff conditions?

Theorem
Let Z ⊂ P2 be a finite set of points whose dual is a line
arrangement with splitting type (a,b). Let P be a general point.
Then the subscheme X = mP fails to impose the expected
number of conditions on [IZ ]m+1 if and only if

(i) a ≤ m ≤ b − 2; and
(ii) h1(IZ (tZ )) = 0,

where tZ := min
{

j ≥ 0 : h0(IZ (j + 1))−
(j+1

2

)
> 0

}
.
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Cones

Cones
• V ⊂ Pn of dimension e, where 1 ≤ e ≤ n − 2

• linear variety λ of codimension e + 2 (disjoint with V )
• Cone Cλ(V ) over V with vertex λ is the union of all lines

through a point of λ and a point of V

Theorem
• V ⊂ Pn – reduced, equidimensional, non-degenerate

subvariety of dimension e (1 ≤ e ≤ n − 2) and degree d
• λ be a general linear space of codimension e + 2
• Then Cλ(V ) is a hypersurface of degree d vanishing to

order d on λ and containing V
• Cλ(V ) is unexpected.
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Veneroni map, what it is

1 Consider n + 1 general linear subspaces Π1, . . . ,Πn+1 of
codimension 2 in Pn

2 Take the linear system of all forms of degree n vanishing
on Π1, . . . ,Πn+1

3 It has dimension n + 1
4 It defines a rational map vn : Pn 99K Pn

5 vn is birational and self-inverse
6 Base locus of vn consists of all the Πj and all common

transversals to them
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Veneroni map, example in P3

• Take the linear system of surfaces of degree 7 vanishing
on 7 general lines Πj :

S = 7H − Π1 − · · · − Π4

• The expected number of conditions imposed on forms of
degree 7 by vanishing on Π1 + · · ·+Π4 is 32

• Thus vdim(S) = 88 = adim(S) by [HH]
• Pulling S back by v−1

3 gives the linear system

S′ = 13H − 4Π1 − · · · − 4Π4

• Each 4Πj imposes 120 conditions on forms of degree 13,
[DHST] so in total 480

• Thus adim(S′)− vdim(S′) = adim(S)− vdim(S′) = 8
• so S′ is unexpected.
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Veneroni – Cremona map, example in P4

• Take S = 7H − Π1 − · · · − Π5 in P4

• vdim(S) = 160, which is equal to adim(S) (checked by
Singular and Macaulay2), hence S has the expected
dimension.

• Pulling S back by v−1
4 gives

S′ = 13H − 3Π1 − · · · − 3Π5.

• Each 3Πj imposes separately 521 conditions on forms of
degree 13, for a total of 2605.

• But! The nonempty intersection of each 3Πj and 3Πi
reduces this by 36.

• Thus the triple hyperplanes impose 2245 conditions.
• Thus adim(S′)− vdim(S′) = adim(S)− vdim(S′) = 25,
• so S′ is unexpected.
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Funny duodectic

• Take in P3 surfaces of degree 12 and 7 general lines
ℓ1, . . . , ℓ7

• A surface of degree 12, triple along 6 lines and singular
along the seventh should not exist (vdim = −2)

• But it does! Why?
• Take a blowup X of P3 along six lines, ℓ1, . . . , ℓ6

• The anticanonical system on this blowup gives a morphism
ϕ to P4

• Y = ϕ(X ) is a quartic threefold
• C = ϕ(ℓ7) (rational quartic)
• T a threefold of secants to C, degT = 3, T singular in C
• D := ϕ∗(T ∩ Y ) is the duodectic.
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subspaces,symbolic powers and Nagata type conjectures, Adv. in Math. 252
471?491 (2014)

• Favacchio, G., Guardo, E., Harbourne, B., Migliore, J.: Expecting the
unexpected: Quantifying the persistence of unexpected hypersurfaces, Adv. in
Math., 388 (2021)

• Harbourne, B., Migliore, J., Nagel, U., Teitler, Z.: Unexpected hypersurfaces and
where to find them, Michigan Math. J. 70 (2020), 301–339

• Harbourne, B., Migliore, J., Tutaj-Gasińska, H.: New constructions of unexpected
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Thank you

• THANK YOU!



All the best, Brian!
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