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Abstract. We show that an essential lamination in a Seifert-�bered space M rarely

meets the boundary of M in a Reeb-foliated annulus.

x0
Introduction

In [Br1], we showed that every essential lamination L in a Seifert-�bered space
M contains a sublamination L0 which can be isotoped to be either vertical or
horizontal in M , i.e., each leaf is either saturated by the circle �bers of M , or each
leaf is everywhere transverse to the circle �bers of M . We also described, in many
cases, how the other leaves of L behaved; in most cases, they could be isotoped to
be horizontal in M . In [Br2], we completed this description, in the case when M is
closed, by showing that, except for the leaves in `Reeb sublaminations', L can be
isotoped so that each leaf is either vertical or horizontal.

A Reeb sublamination is a generalization of the concept of `cylindrical compo-
nent' found in foliation theory, which is in turn related to the concept of a Reeb
annulus. A Reeb annulus is an annulus A=S1 � I, which is foliated by lines which
approximate the I-�bers of the annulus, except near the ends, where they spiral
in the same direction toward the two boundary circles (which are also leaves). A
cylindrical component C (called a component of type II in [Ro]) is a Reeb annulus
crossed with S1, which is foliated by (leaf)�S1. The interior leaves are therefore
open annuli which spiral in the same dirction towards the two boundary tori (which
are also leaves). A Reeb sublamination is a sublamination, which contains at least
one of the non-compact leaves, of this foliation, or of the related foliations of the ori-
entable and non-orientable I-bundles over the Klein bottle. and the non-orientable
I-bundle over the torus, which a cylindrical component double or four-fold covers.

In this paper we prove much the same theorem as described above, in the case
that M has non-empty boundary. To do so we extend the notion of cylindrical
component to include a Reeb annulus crossed with I (and its relatives), and extend
the notion of Reeb sublamination accordingly. The boundary of the cylindrical
component now includes an I-saturated part, which consists of a pair of annuli,
each foliated as a Reeb annulus. The leaves of the cylindrical component meeting
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the interior are now in�nite rectangles, meeting each of the Reeb annuli in a leaf of
its foliation (see Figure 4 below).

Theorem. Let M be an orientable, connected, compact Seifert-�bered space with
non-empty boundary, and L an essential lamination in M , which is either trans-
verse to, or contains as a leaf, each boundary component of M . Then, possibly after
splitting L open along a �nite number of leaves, either L can be isotoped so that
each leaf is either vertical or horizontal, or it has �nitely many Reeb sublamina-
tions with horizontal boundary. In particular, if L has a Reeb sublamination, then
M contains a horizontal annulus.

An appropriate statement for non-orientableM can be obtained by applying the
above theorem to its orientation double covering.

Essential laminations in Seifert-�bered spaces therefore fall into four distinct
classes. There are the horizontal laminations, the vertical laminations, the mixed
horizontal/vertical laminations, and the laminations with `horizontal' Reeb sub-
laminations. A horizontal lamination can be `�lled in' with additional horizontal
leaves in its complement, to `complete' it to a horizontal foliation. Such foliations
have been extensively studied (see [EHN],[JN],[Na]) to the point where we can now
determine (in terms of their Seifert invariants) exactly which Seifert-�bered spaces
admit horizontal foliations. This fact serves as the basis for nearly all of the known
non-existence results ([Br1],[Cl],[BNR]) for essential laminations and foliations. A
Seifert-�bered space M can be thought of as a circle bundle over a 2-dimensional
orbifold (the space obtained by crushing each circle �ber to a point is topologically
a surface, but geometrically an orbifold), and a vertical lamination in M is simply
the full preimage, under the projection to the base orbifold B, of a 1-dimensional
lamination in B. Every leaf can therefore be foliated by circles, and therefore con-
sists of tori, compact annuli, open annuli, half-open annuli, and their non-orientable
analogues. If an essential lamination L has a vertical �sublamination L0, then the
horizontal leaves of LnL0 can be thought of as coming from a horizontal lamina-
tion of M jL0, the manifold obtained by splitting M open along the leaves of L0.
This is a (usually non-compact) 3-manifold with boundary. The leaves of L are ob-
tained from the leaves of this horizontal lamination by having them spiral towards
the leaves of L0 as they approach the boundary of M jL0, as in the de�nition of a
Reeb annulus. We don't place any restriction on the direction in which they spiral,
however. Finally, when L contains a Reeb sublamination, the leaves of L inside of
the cylindrical components have already been described, while (by simply ignoring
the leaves inside the components) the leaves outside of the cylindrical components,
together with the boundaries of the components, still form an essential lamination,
and can therefore be isotoped to be horizontal. Such a lamination therefore looks
like a collection of Reeb sublaminations sandwiched between horizontal laminations.

Just as with horizontal tori in closed Seifert-�bered spaces, horizontal annuli
and M�obius bands are rare; there are, in fact, only three orientable Seifert-�bered
spaces which can contain them. They are the space with base D2 and two multiple
�bers of multiplicity 2, the trivial S1-bundle over the annulus, and the non-trivial
S1-bundle over the M�obius band. The above theorem therefore says that essential
laminations in most Seifert-�bered spaces cannot have `horizontal' Reeb annuli in
their boundary. As such, this result is much in the spirit of a paper of Gabai [Ga],
where it is shown that an essential lamination in the exterior of a knot in S3 must
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meet the boundary torus either in a suspension (i.e., no Reeb annuli) or in Reeb
annuli whose compact loops describe a curve in the torus which meets the meridian
of the knot at most once. If the lamination is in fact a foliation, the Reeb annuli
must be meridional.

Torus knots are the only knots in S3 with Seifert-�bered exterior, and their
exteriors cannot contain a vertical essential lamination, other than the obvious
vertical annulus separating the two multiple �bers, or, for (2,q)-torus knots, the
vertical M�obius band that this annulus `double covers'; the proof of this is entirely
similar to that of Proposition 3 in [Br1]. These annuli also happen to be the cabling
annuli for these knots. Since none of these knot exteriors contain horizontal annuli
(although the (2,2)-torus link exterior does), we can conclude that no essential
lamination in a torus knot exterior can have Reeb annuli in its boundary, other
than vertical ones. Our main theorem therefore implies:

Corollary. Every essential lamination in the exterior of a torus knot either con-
tains the cabling annulus as a leaf or (for (2,q)-torus knots) the M�obius band it
double covers, or is isotopic to a horizontal lamination.

Naimi [Na] has completed the classi�cation of those slopes in the boundary of a
torus knot exterior that can be realized by horizontal laminations. In particular,
a horizontal lamination in the (p; q)-torus knot exterior must meet the boundary
torus in curves of slope r2(-1,q-2], and all such slopes are realized. If
r2(-1,q-2), then the essential lamination can be chosen to meet the boundary in
parallel loops of slope r (when r is rational). If r=q-2, then the boundary lamination
must contain non-compact leaves. The above corollary allows us to drop the word
`horizontal' from this result.

Corollary. Every essential lamination in a (p; q)-torus knot exterior either con-
tains the cabling annulus or M�obius band as a leaf or is horizontal and meets the
boundary torus in a suspension, whose curves have slope r2(-1; q-2]. Further, all
such slopes are realized.

These facts, in turn, are among the ingredients in the proof [BNR] that the
incompressible torus in the manifold M obtained by 37/2 surgery on the (-2,3,7)
pretzel knot, �rst identi�ed by Hatcher and Oertel [HO], is a leaf of every essential
lamination contained inM . This same approach can also be applied to incompress-
ible tori in many other graph manifolds [BNR].

The author wishes to express his thanks to the referee, for several comments
which helped to improve the exposition of this paper.

x1
Vertical and horizontal sublaminations

We refer the reader to [Or] for background information on Seifert-�bered spaces,
and to [G-O] for basic information on essential laminations. For the more technical
portions of what follows, a familiarity with the techniques of [Br1] will be helpful.

LetM be an orientable, compact Seifert-�bered space with non-empty boundary,
and let p:M!F be the associated quotient map, crushing every circle �ber to
a point. The quotient space F is a 2-dimensional orbifold, whose cone points
correspond to the multiple �bers ofM . As in [Br1], we can describe a decomposition
of M into solid tori, by cutting F along disjoint properly embedded arcs (whose
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union we call �) into a collection of disks (whose union we call D), each containing
at most one cone point. The inverse image of the arcs � is a collection of annuli,
which we denote A. These annuli split M into the set of inverse images of the
disks D, which are therefore 3-manifolds which are Seifert-�bered over the disk,
with at most one multiple �ber, and so are solid tori. Each has a (usually non-
trivial) Seifert-�bering induced fromM . We will denote these solid toriM1,: : : ,Mn.
For simplicity, we shall actually choose two parallel arcs for each arc in the original
collection �, so that every solid torus we obtain after cutting open along the annuli,
when thought of as lying in M , is embedded. That is, no solid torus Mi abuts the
same component of A from both sides.

Let L be an essential lamination in M . The proof that L contains a sublamina-
tion L0 which can be made either vertical or horizontal w.r.t. the Seifert-�bering
of M is entirely similar to the argument given in [Br1] for closed M . Some addi-
tional care, however, must be taken when working near the boundary of M . For
completeness, we give the proof here.

Theorem 1. Every essential lamination L in a Seifert-�bered space M with non-
empty boundary can be isotoped, possibly after splitting L open along a �nite number
of leaves, so that it contains a sublamination which is either vertical or horizontal
in M . If L contains a vertical sublamination, then L can be isotoped so that each
leaf of L is either vertical or horizontal in M .

Proof: As in [Br1], the argument focusses on the intersection L\S, where S is a
�nite collection of regular �bers of the �bering of M , which we call the sentinel
�bers. In this instance S = A\@M = @A.

By splitting L along a �nite number of leaves, if necessary, we can assume that
L is carried by a branched surface B, and so (by making B transverse to A) L
can be made transverse to the annuli A. Note that splitting does not qualitatively
change the boundary behavior of L. @L�@M is a one-dimensional lamination in a
union of tori, and so we can, by isotopy, pull L `taut' w.r.t. @A. By this we mean
that @A misses any vertical loops of @L, meets any horizontal loops of @L tautly, as
well as any Kronecker-type (i.e., non-Reeb) leaves lying between horizontal loops
of @L, and meets non-compact leaves lying between vertical loops tautly. Finally,
we can assume that @A meets all Reeb-type leaves lying between horizontal loops
as tautly as possible, i.e., the direction of intersection with each component of @A,
when we orient the Reeb leaf, changes exactly once. This isotopy can be carried
out conservatively, i.e., without introducing new points of intersection with S, and
without moving any of the points that it doesn't erase.

We now build an in�nite sequence of conservative isotopies of L, by running
cyclically through the solid tori Mi, and, at each stage, `cleaning up' Li = L\Mi.
L\@Mi is a 1-dimensional lamination �i in the torus @Mi, and so, since it can-
not contain any monogons - otherwise L would admit an end-compressing disk, a
contradiction - it consists of an incompressible lamination in @Mi, together with a
collection T of trivial circles, which are open and closed in �i. By surgering L along
disks in Mi, we can assume that all of the trivial circles bound disks in Li; because
L is essential, this surgery can be achieved by a (conservative) isotopy. We can now
isotope these disks out ofMi, to eliminate T from �i. If some of these trivial circles
intersect S, this must be done in several steps: �rst, by a (conservative) isotopy of
@L, the bounding disks can be pushed o� of Mi\@M (see Figure 1), after which
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their boundaries lie entirely on A\@Mi, and the disks can then be pushed out of
Mi.

Figure 1

Any meridional loop  of �i now bounds a disk leaf of Li; this is because it
bounds a disk D in the leaf of L containing it. Since  intersects @M , this disk
lies on the Mi-side of . D must therefore be entirely contained in Mi, since
otherwise D\�i�D contains leaves in the interior of D. If any of these leaves are
non-compact, then D\�i either contains a monogon or holonomy around a trivial
loop, both contradicting the essentiality of L. But any compact loops are either
non-null-homotopic in (Mi, hence) M , or are meridional, hence intersect @M , also
both contradictions, since in the �rst case D provides a null-homotopy for the loop,
and in the second case D\@M�@D. So D\�i=D\@Mi=@D.

By Lemma 2.1 of [Br1], the leaves of Li are �1-injective in Mi. By Theorem
3.1 of [Br1], Li either consists of meridional disks, or it contains a sublamination,
consisting of annuli and possibly one M�obius band, which is vertical w.r.t. a possibly
di�erent model Seifert-�bering ofMi; all other leaves can be made horizontal w.r.t.
this �bering.

If Li has annular leaves and no M�obius band leaf, then by a further isotopy
of L, we can pull �i taut w.r.t. S, except possibly for Reeb leaves lying between
non-vertical loops of �i. If �i contains any vertical loops, we can then isotope Li

so that each leaf is vertical or horizontal w.r.t the Seifert-�bering of Mi induced
fromM . If �i contains any horizontal, non-meridional loops, we can eliminate their
intersection with S by a conservative isotopy of L, since the leaves of Li containing
them are boundary-parallel annuli (see Figure 2). Note that since S�@M , what is
pictured is a @-compression of L, not an isotopy. But since L is @-incompressible,
this compression results in a lamination isotopic to L, together with a collection of
@-parallel disks (which we throw away). Once all of the annular leaves have been
eliminated, we are left with a collection of meridional disks, by Theorem 3.1 of [Br1]
(since the leaves are horizontal w.r.t. some Seifert-�bering on Mi), which we can
make horizontal w.r.t the Seifert-�bering of Mi induced from M , by a conservative
isotopy.

Figure 2

This gives us a conservative isotopy I of L, so that I(L)\Mi either contains
a M�obius band leaf, or a vertical sublamination w.r.t the Seifert-�bering of Mi

induced from M , or a collection of horizontal meridional disks w.r.t. the same
Seifert-�bering. The �rst two cases lead us immediately to a vertical sublamination
of L; the third leads us to repeat the process, building our in�nite string of isotopies.
We deal with the �rst two cases �rst.

A M�obius band leaf of Li must contain a loop isotopic to the core ofMi, which is
a �ber of the Seifert-�bering of M . So L is isotopic to a lamination which contains
an (interior) �ber of M . This is obviously also true if some L\@Mi contains a
vertical �ber, since the annulus leaf of Li containing it contains interior �bers.
Splitting L along the leaf containing the M�obius band or annulus, we then have an
essential lamination L missing a �ber of M . If we drill out a small neighborhood
of this �ber, we get a new Seifert-�bered space M 0, containing L. L is essential in
M 0, and now misses one of the boundary components T 0 of M 0.
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Proposition 2. Every essential lamination L as above can be isotoped to contain
a vertical sublamination L0 ; all other leaves can be made horizontal in M 0.

Proof: If we choose a new splitting of M 0, using annuli all of which meet T 0, then
for every resulting solid torus M 0

i
, L\M 0

i
=L0

i
misses a vertical annulus in @M 0

i
.

Therefore, �0
i
=L\@M 0

i
either contains vertical loops or consists of trivial disks.

We will now build a vertical sublamination of L. Starting with M1, either we
�nd vertical loops or, after surgering and then pushing trivial disks out, L\M1 =
;. Note that, in the second case, no further conservative isotopy will push anything
back into M1, since all such pushes require L\@M1 6= ;. Continuing cyclically
through our solid tori, we must �nd some i so that, after isotopy, L\@Mi contains
vertical loops. Otherwise, after passing through our list of solid tori once, we will
have L\Mi = ; for all i, hence L = ;, a contradiction. So we may assume that,
after isotopy, L\@Mi contains a vertical loop, for some i. What we will see is that
if we now run cyclically through our solid tori once more, then when we are done,
the isotoped lamination will have a vertical sublamination.

The key point is that our isotopies will never move a vertical loop  of L\@Mi.
This is because our isotopies only deal with straightening curves ( is already
straight), dealing with intersections of the �i with S ( has none), and throwing
away trivial pieces of L after surgery ( is essential in M , so will not be contained
in any).

In fact, even more is true. Once we have made L meet some @M 0

i
in vertical

loops, and no trivial loops, we know by Theorem 3.1 of [Br1] that L0
i
contains a

vertical sublamination, and all other leaves of L0
i
can be made horizontal (see Figure

3). But now if we move on to begin straightening L in other solid tori, we have the
following important fact:

Lemma 3. L0
i
remains �xed under all further conservative isotopies of L. In

particular, no @-compression of L will abut the components of S contained in @M 0

i
.

Proof: @L0
i
consists of vertical loops and non-compact leaves, neither of which can

be contained in a compact piece of a leaf L of L (in particular, in a disk in L), so no
ordinary surgery of L can a�ect @Li. A @-compression, on the other hand, would
have to join together two non-compact leaves of @L0

i
; they are the only leaves which

intersect S. The @-compressing disk, together with half of the in�nite rectangle
between the two leaves, would yield an end-compressing disk for L, a contradiction;
see Figure 3.

Figure 3

Consequently, as we work cyclically through the solid tori, we either completely
clear L out ofM 0

i
, or leave a lamination, all of whose leaves are vertical or horizontal,

behind. In so doing, we neither push anything back into solid tori we have cleared
out, nor disturb any of the horizontal/vertical laminations that we have previously
built. So once we return to our starting point, L has been isotoped so that in
every solid torus M 0

i
, L\M 0

i
is a lamination all of whose leaves are either vertical

or horizontal. The union of the vertical pieces form a vertical sublamination L0

of L; all leaves of LnL0 are made up of horizontal pieces in the solid tori, so are
horizontal in M 0.

Since the Seifert-�bering of M 0 was induced from the one on M by inclusion, L0

is a vertical sublamination of L in M . Since the leaf the we split L open along is



Boundary behavior in Seifert-�bered spaces 7

now vertical (it met the annuli A in vertical loops lying near T 0), when we collapse
it back, we get a vertical sublamination of our original lamination L; all other leaves
are (identical, hence) horizontal.

Note that this in particular implies that @L contains no horizontal loops with
Reeb-type leaves in between. Such leaves could not be isotoped to lie either ver-
tically or horizontally in M . This could have been seen earlier in the proof, since
every component of A abuts T 0, so contains a vertical loop of L\A. Any Reeb leaf
in some component T of @M could have been joined to a pair of arcs in an annulus
of A abutting T, as in the lemma, to give an end-compressing disk.

The proof of Thoerem 1 now �nishes exactly as in [Br1]. We work cyclically
through the solid tori M1,: : : ,Mn, using conservative isotopies to make L meet the
Mi tautly. If at any point we encounter a M�obius band leaf or a vertical annulus, we
stop and apply the above argument to �nd a vertical sublamination of L. Otherwise,
we continue, building an in�nite sequence of isotopies Ir which make L meet Mi

in horizontal, meridional disks, for r � i(mod n). Then, by focussing on the stable
points

T
In(L)\S of L in the sentinel �bers S, we can see, as in [Br1], that a stable,

horizontal lamination L0 grows out of them, built out of the pieces of L which
eventually stabilize under the isotopies Ir . A �nal argument, as in [Br1], shows
that the pieces of this horizontal lamiantion actually all stabilize in �nite time, so
L0 is in fact a sublamination of L. The proofs are identical to those given in [Br1],
so we will not repeat them here.

x2
Finding horizontal annuli

Theorem 1 provides a complete description of an essential lamination L when L
contains a vertical sublamination. All leaves of L can then be made either vertical
or horizontal w.r.t. the Seifert-�bering of M . This need not be true when L
contains a horizontal lamination, however. [Br2] explored this phenomenon whenM
was closed, and showed that cylindrical components - parallel horizontal tori, with
Reeb-type annuli lying between - essentially gave the only counterexamples. When
@M 6=;, there is a similar phenomenon; the lamination can contain two parallel
horizontal annuli, with Reeb-type leaves lying in between (see Figure 4). The Reeb
leaves cannot be isotoped to be vertical or horizontal in M . This is what we have
called a `Reeb sublamination'.

Figure 4

The purpose of this section is to show that such annuli are essentially the only
possible counterexamples. Since horizontal annuli (and horizontal tori, for that
matter) are scarce in Seifert-�bered spaces, this implies that every essential lami-
nation in most Seifert-�bered spaces can be isotoped so that every leaf is horizontal
or vertical. This result therefore parallels the main result of [Br2]. In contrast with
the previous section, the fact that we have non-empty boundary actually simpli�es
the argument, instead of complicating it; the boundary gives us `edges' to start
arguing from, instead of having to start from the `middle' of the manifold, as in
[Br2]. We begin with the analogue of Proposition 6 of [Br1].
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Proposition 4. Let L be an essential lamination in the Seifert-�bered space M ,
with @M 6= ;. If L contains a horizontal sublamination L0 which contains no com-
pact leaves, then L is isotopic to a horizontal lamination. In particular, the 1-
dimensional lamination L\@M is isotopic (in @M) to a lamination everywhere
transverse to the circle �bers of M .

Proof: If we impose a Riemannian metric on M , then the (acute) angle which the
leaves of L make with the circle �bers ofM is (basically by de�nition) a continuous
function �:L![0,�/2]; since M is normal and L is closed, we can extend � to a
continuous function �:M![0,�/2]. Since L0 is horizontal, � never takes on the
value 0 on L0, and so, since L0 is compact, � is bounded away from 0 (by �, say)
on L0. Consequently, there is an open neighborhood U of L0 in L (for example,
��1((�=2; �=2))) where � is non-zero. Now choose a component N of M jL0, the
manifold M split open along the lamination L0; it is a (non-compact) manifold
with boundary. Since L0 is horizontal, it cuts the circle �bers of M into intervals,
which foliate N , making N an I-bundle over some (by hypothesis) non-compact
base B. Note that every such component N must meet @M , since every leaf of
L0 must meet @M . Some of the vertical boundary components of N could be
non-compact, if the boundary leaves in L0 meet @M in non-compact leaves.

Claim: N0=NnU is compact.

This is because if we pick points xi in N0 with no convergent subsequence in N0,
i.e., whose images in the base B tend to in�nity, the I-�bers containing them must
become arbitrarily short. For otherwise, a subsequence converges in M (since M is
compact) to a point x. Since this convergence cannot be taking place in N0 (hence
not in N , since N0 is closed in N), x must lie in NnN�L. But then in a product
neighborhood I2�I of x, the subsequence cannot eventually lie on the same vertical
level (since then the sequence would converge in N), and so the heights of the levels
containing the subsequence must go to 0.

But since L0 is compact and U is open, there is an � >0 so that the � neigh-
borhood of every point of L0 is contained in U ; � is simply the Lebesgue number
for the open cover U of L0. But since the endpoints of every I-�ber in N lies in
L0, this implies that every su�ciently short �ber of N lies in U , and therefore our
subsequence eventually lies in U , hence not in N0, a contradiction.

Consequently, its projection B0 of N0 to the base B of N is compact, so we
can choose simple loops and arcs i missing B0 so that the component B1 of
Bj(1[� � � [k) containing B0 is compact, and connected. Taking inverse images,
we get a collection R of `vertical' annuli and rectangles in N so that the com-
ponent N1 of N jR containing N0 is a connected I-bundle over the compact base
B1. By deleting components of R, if necessary, we can include any other compact
components of N jR in N1, so we may assume that every component of Nn(N1nR)
is non-compact, i.e., is an I-bundle over a non-compact base. @N1splits naturally
into two pieces, the `vertical' boundary, @vN1=R, saturated by I-�bers, and the
`horizontal' boundary @hN1=N1\L0, the associated @I-bundle.

Outside of N1, every point of L\N is contained in U , so L is transverse to the
circle �bers of M at these points. In particular, L\@vN1 is a horizontal lamina-
tion in the vertical boundary of N1. In addition, L meets N1\@M in a horizontal
lamination, since otherwise a turnaround arc can be joined to a half-in�nite `verti-
cal' rectangle in NnN1 to give an end-compressing disk for L, a contradiction (see
Figure 5a).
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Figure 5

Therefore, L meets @N1 in a horizontal lamination. Since N1 is an I-bundle over
a compact base, it can be cut open along vertical rectangles to give an I-bundle over
a disk, i.e., a 3-ball. Working inductively, as in Proposition 6 of [Br1], we can see
that L meets each of these rectangles in horizontal arcs. For otherwise we can once
again join a turnaround arc to a half-in�nite rectangle to give an end-compressing
disk for L (Figure 5b); or, if the arc hits @M , it gives us a @-compressing disk for
L (Figure 5c), which is also a contradiction.

We can therefore absorb neighborhoods of these rectangles into NnN1, main-
taining the property that L be horizontal there. In the end, we are left with the
3-ball, which is �bered over a disk, and L is horizontal along its vertical boundary.
L must therefore meet the boundary in loops; otherwise L has non-trivial holonomy
around a homotopically trivial loop, which is impossible. These loops must bound
disks in the 3-ball, which can therefore be made horizontal. This �nishes pulling L
horizontal in N . Doing this for all components of M jL0 completes the proof.

The above proposition also shows that the leaves in a complementary component
N of the horizontal lamination L0 found in Theorem 1 can be made horizntal, if
one (hence both) of the boundary leaves L0\N=@hN is non-compact. Therefore,
to determine what leaves of L can be made horizontal, it will be su�cient to focus
our attention on those leaves which can live in an I-bundle component N lying
between horizontal, compact leaves. By splitting the horizontal leaves, if necessary,
we may assume that @hN is embedded in M . (Note that this turns a horizontal
M�obius band into a horizontal annulus.) These horizontal leaves must meet @M ,
since they meet every circle �ber of M . N is therefore a handlebody. We can
therefore conclude that every leaf of L\N meets @M : otherwise, the set of leaves
which didn't meet @M would be an (essential) sublamination of L, living in a
handlebody, which is impossible.

Proposition 5. If L contains a horizontal sublamination L0, and a leaf L of L
cannot be isotoped to lie horizontally in M , then L is a standardly embedded planar
leaf lying either in a trivial I-bundle component of M jL0 bounded by two annulus
leaves of L0, or lying in a non-trivial I-bundle component of M jL0 bounded by a
single annulus leaf.

Proof: L0 consists of the `eventually stable' pieces of L under the sequence of
isotopies that we constructed. It is easy to see that any horizontal leaf of @L�@M
is stable; no surgery disk could meet @M , and a @-compression meeting such a
leaf would either constitute a `real' @-compression for L (Figure 6a) or provide an
end-compressing disk for L (Figure 6b). Its intersection with the sentinel �bers
S is therefore stable, so the leaf of L containing them will be eventually stable,
hence contained in L0 . Consequently, every leaf of L\N , except for the horizontal
boundary leaves, meets @vN in Reeb-type leaves.

Figure 6

We will now show, �rst, that the Reeb-type behavior on any two components of
@vN must be `coherently oriented', which will lead us quickly to the fact that @vN
has at most two components. Two @v-components leads us to the �rst possibility,
by an argument reminiscent of Novikov's [No] construction of Reeb components;
one @v-component will lead us to the second possiblity.
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By coherently-oriented we mean that if the two @v-components A1, A2 are joined
by a vertical rectangle R in N (see Figure 7a), then the Reeb leaves in Ai open up
in the same direction normal to R. If not, then by the usual isotopies we can make
L meet R in horizontal arcs. The innermost turnaround leaves of L\Ai must be
joined by these arcs, otherwise we can �nd an end-compressing disk for L; see Figure
7b. If these turnaround arcs are not coherently-oriented, then we can (Figure 7c)
�nd a loop in a leaf of L which is null homotopic in M , hence bounds a disk in its
leaf, yet meets a proper arc in the leaf exactly once. This is impossible; proper arcs
meet, transversely, the boundaries of disks an even number of times.

Figure 7 Figure 8

But now if N has three or more @v-components, their Reeb leaves must be
pairwise coherently-oriented. Figure 8 shows that this is impossible; given two of
the @v-components, there is no way to orient the Reeb leaves in the third coherently
with the other two. This �gure tacitly assumes that the circle �bers of M can
be given an orientation, so that none of the vertical rectangles have a half-twist
(relative to one another). But we can orient the �bers of M, after passing to a
double cover of M , if necessary. L then lifts to an essential lamination, L0 lifts
to a horizontal sublamination, and N lifts to a (trivial) I-bundle, each component
having three or more @v-components, a contradiction.

Consequently,N has either one or two @v-components. If it has two, then, joining
the components by a vertical rectangle R, the innermost Reeb-type arcs of (@vN)jR
on each @v-component are joined by horizontal arcs in R, as above. These pieces
and arcs form a loop in a leaf of L, which is null-homotopic in N , hence bounds a
disk in its leaf; see Figure 9; we will call such a disk a Reeb disk. Reeb Stability
implies that this disk lifts to Reeb disks in all nearby leaves.

Figure 9 Figure 10

But then all of the Reeb arcs are contained in Reeb disks. For otherwise, starting
from the outermost Reeb arc in one of the components F of (@vN)jR, there is a
�rst arc � which is not contained in a Reeb disk, by the (relative) openness of Reeb
arcs. If this arc is limited upon by arcs in Reeb disks, it is easy to see that the Reeb
disks are limiting upon another Reeb arc on the other component of @vN (Figure
10). The horizontal arcs in R must join these two Reeb arcs together, because
otherwise we �nd non-trivial holonomy around a null-homotopic loop. These arcs
combine to give us the boundary of another Reeb disk, a contradiction. If, on the
other hand, � is not limited upon by Reeb disks, then it is in particular isolated in
@L from the `outermost' side. So we push all of the Reeb disks in front of �across
R; now �is an outermost Reeb arc in F jR. But now the argument above implies
that � is contained in a Reeb disk D, so pushing the Reeb disks back across R
(which does not move D) means that � had already been contained in a Reeb disk,
a contradiction.

Consequently, all of the Reeb arcs are contained in (parallel) Reeb disks. If
we push all of these disks across R, we create new (longer) Reeb arcs, which are
all therefore contained in new (larger) Reeb disks. An old Reeb disk cuts a new
Reeb disk into two horizontal rectangles, whose boundaries lie near @hN . These
rectangles project up and down along the I-�bers to @hN . This projection identi�es
the two arcs which lie in R in each of their boundararies together, showing that
@hN consists of a pair of (horizontal) annuli. Therefore, L\@hN consists of two
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parallel horizontal annuli. It is easy to see that the Reeb disks glue to the remaining
horizontal rectangles to give a Reeb-type foliation in between the annuli, as desired.

If @vN consists of a single vertical annulus, then (since the core of this annulus
is not homotopically trivial in N - the parallel loops @vN\@hN�L have non-trivial
holonomy around them) there is an essential arc in the base of the I-bundle N
giving us a similar vertical rectangle R in N to work with. Our previous arguments
apply, so, as in Figure 7, the Reeb arcs must meet the ends of R (i.e., the vertical
components of @R) in a coherently oriented fashion. We can therefore once again
�nd Reeb disks containing each of these Reeb arcs. Pushing them all across R,
we �nd new Reeb disks, which the old ones cut into horizontal rectangles. In this
case, however, they do not each project onto an annulus in @hN , because this
would imply that @hN had four boundary components, instead of two. These two
rectangles therefore glue end-to-end to form a single annulus in @hN , giving us our
second situation. N is an I-bundle with boundary a torus, having @hN and @vN
each a single annulus; it is therefore the non-trivial I-bundle over the M�obius band.
The picture of L\N follows as in the previous case.
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