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a b s t r a c t

In this paper we study a reaction–diffusion–advection predator–prey model in a river.
The existence of predator-invasion traveling wave solutions and prey-spread traveling
wave solutions in the upstream and downstream directions is established and the
corresponding minimal wave speeds are obtained. While some crucial improvements
in theoretical methods have been established, the proofs of the existence and
nonexistence of such traveling waves are based on Schauder’s fixed-point theorem,
LaSalle’s invariance principle and Laplace transform. Based on theoretical results,
we investigate the effect of the hydrological and biological factors on minimal wave
speeds and hence on the spread of the prey and the invasion of the predator in
the river. The linear determinacy of the predator–prey Lotka–Volterra system is
compared with nonlinear determinacy of the competitive Lotka–Volterra system to
investigate the mechanics of linear and nonlinear determinacy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Various species and organisms live in media with a predominated unidirectional flow such as rivers and
streams. Mathematical models, such as partial differential equations and integro-differential or integro-
difference equations have been established to study the dynamics of populations of one or more species in
streams or rivers (see e.g., [1–12]). One of the main goals is to understand how populations can persist in
such a habitat when continuously subjected to a unidirectional flow (i.e., the “drift paradox”) and how the
water flow influences spatial population spread and persistence. The studies also provide water management
strategy for maintaining desired levels of ecosystem in rivers (i.e., the “instream flow needs”). Predator–prey
systems are important components of ecosystems in river or stream environments. It is crucial to understand
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how the interacting preys and predators persist or spread when they are subjected to advective flows. Existing
studies of predator–prey systems in rivers are few (see e.g., [3]) and have not theoretically analyzed the effect
of the flow on persistence and spread (or invasion) of predator–prey systems.

In this paper we will study the following reaction–diffusion–advection predator–prey system:
ut = d1uxx − b1ux + u(r1 − b11u− b12v),
vt = d2vxx − b2vx + v(r2 − b21v + b22u),

(1)

where u(x, t) and v(x, t) denote the densities of the prey and the predator at position x ∈ R and time t,
respectively, d1 and d2 are diffusion constants of the prey and the predator, respectively, b1 and b2 are the
advection rates of the prey and the predator, respectively, r1 and r2 are the growth rates of the prey and
the predator, respectively, b11 and b21 and the density-dependent constants of the prey and the predator,
respectively, b12 is the predation rate, b22 is the conversion rate. Parameters d1, d2, r1 and bij (i, j = 1, 2)
are positive constants; b1, b2 and r2 are real numbers. When b1 and b2 have different signs, it means that the
advective directions of the two species are not the same. For instance, if b2 > 0 represents that the predator
is subjected to the flow running from the left (upstream) to the right (downstream), then b1 < 0 represents
that the prey such as mayflies flies from the right (downstream) to the left (upstream). If r2 is positive, then
the predator has food sources other than the prey and can grow without the prey; if r2 is negative, then r2
essentially is a death rate of the predator and the predator only grows via consuming the prey.

Traveling wave solutions of partial differential equations have attracted increasing interest in recent years
(see e.g., [13–30]). A traveling wave solution is a solution of the form

u(x, t) = U(s), v(x, t) = V(s), s = x+ c̃t, (2)

where c̃ is the wave speed. It describes the translation of an invariant wave profile in the same direction at a
constant speed. For biological models, traveling wave solutions can also show the invasion of species in the
spatial habitat.

Various methods have been developed and applied to prove the existence of traveling wave solutions of
different types of systems. The monotonic iteration method is powerful for monotonic systems [15,16]. The
shooting method, proposed by Dunbar [13,14] and developed by Huang [17], is widely applied to prove the
existence of traveling wave solutions for nonmonotonic systems [18–22]. The Schauder’s fixed-point theorem
is also frequently used to prove the existence of traveling wave solutions for nonmonotonic systems [23–27].
Recently, Huang [31] proposed a geometric approach for some classes of nonmonotonic reaction–diffusion
systems; Zhang et al. [30] and Fu et al. [32] developed methods based on the Schauder’s fixed-point theorem
for nonmonotonic reaction–diffusion systems. The Harnack Inequality method was introduced into traveling
waves to study the boundedness of traveling waves by Ducrot and Langlais [33]. However, different advection
rates of the prey and the predator have not been considered in the theoretical studies of the minimal wave
speeds of traveling waves for nonmonotonic systems. The effect of the water flow on persistence and extinction
of predator–prey systems in rivers has been investigated in [3] by virtue of the approximation of traveling
wave speeds for decoupled systems, but the theories of the spreading speeds or the minimal wave speeds of
traveling waves of predator–prey systems in rivers have not been rigorously established due to the difficulty
in mathematical analysis of nonmonotonic systems.

Model (1) is nonmonotonic and the advection coefficients b1 and b2 may be different. To derive the
necessary and sufficient conditions for the existence of traveling wave solutions of model (1), we extend
the methods in [30] for model (1) since different advection coefficients may result in a negative minimal
wave speed, which can cause difficulties for the applications of the methods in [30]. Firstly, the upper–lower
solutions in [30] must be improved to deal with the negative wave speed. Secondly, the non-triviality or pos-
itivity of traveling wave solutions with minimal wave speed for predator–prey models was rarely considered
(e.g. [32,19,21,14,18,20]). This positivity of traveling wave solutions with minimal wave speed was confirmed
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by Zhang [30] for a general noncooperative system but the proof method is not correct there. Li et al. [34]
proved the positivity for a disease-transmission model via a Lyapunov function. However, it is difficult to
construct a Lyapunov function for a complex model. In this paper, a general method (Lemma 3.9), which
does not depend on the construction of a Lyapunov function, will be used to show this positivity and it can
be applied to the general model in [30]. Thirdly, the boundedness of the ratio of the derivative of traveling
wave solution to traveling wave solution is needed to show the persistence of traveling wave solutions in [30]
or to apply the Lyapunov function [31]. The proof is lengthy to get this boundedness in [30,31]. In this paper,
a simple result (Lemma 3.7) is established to show this boundedness and it can be applied to more complex
models such as delayed models or models consisting of more than two equations. Actually, this lemma is a
generalization of Harnack Inequality in [35] for a homogeneous elliptic operator on a bounded space domain,
but the elliptic operator in Lemma 3.7 is nonhomogeneous and the space domain is unbounded.

The minimal wave speed of model (1) is said to be linearly determined or of linear determinacy if it is
determined by the linearization of the predator equation of the corresponding ordinary differential equation
system of traveling wave profiles at the invaded equilibrium. It is well-known that the minimal wave speed
for some types of predator–prey models is linearly determined [13,14,18,19,17,24]. Recently, Zhang et al. [30]
and Huang [31] have shown that the minimal wave speed for a reaction–diffusion system with predator–prey
or susceptible–infective interaction is linearly determined. However, a model with different advection co-
efficients was not considered in [30] or [31]. In this paper we will show that the minimal wave speed for
system (1) is of linear determinacy. We will also present the biological explanations of linear determinacy
by comparing our results with those of the competitive Lotka–Volterra systems in [36–38]. It will be shown
that there is a connection for the linear determinacy of the predator–prey Lotka–Volterra system and the
competitive Lotka–Volterra system.

This paper is organized as follows. In Section 2, main theoretical results about minimal wave speeds are
presented (without proofs). Section 3 is devoted to the proof of the first main theorem and Section 4 is devoted
to the proof of the second main theorem. In Section 5, we provide the biological interpretation of the minimal
wave speed and especially relate it to the predator’s invasion and the prey’s spread. In Section 6, we analyze
the linear and nonlinear determinacy of the minimal wave speed and compare our results with previous results
of models for interactive populations in [36–38]. A short discussion in Section 7 then completes the paper.

2. Main theoretical results

In this section, we present two main theorems in this paper. These theorems establish necessary and
sufficient conditions for the existence of traveling wave solutions connecting the prey-only equilibrium to a
predator-present (predator-only or coexistence) equilibrium and of traveling wave solutions connecting the
predator-only equilibrium to the coexistence equilibrium. The minimal wave speeds of such traveling waves
are obtained.

2.1. Nondimensionalization and equilibria of model (1)

We firstly simplify model (1) by decreasing the number of parameters. By introducing dimensionless
variables as

ū = b11

r1
u, v̄ = b21

r1
v, t̄ = r1t, x̄ =


r1

d2
x,

γ1 = b12

b21
, γ2 = b22

b11
, d = d1

d2
, r = r2

r1
, α1 = b1√

d2r1
, α2 = b2√

d2r1
,

(3)
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system (1) can be written into 
ūt̄ = dūx̄x̄ − α1ūx̄ + ū(1− ū− γ1v̄),
v̄t̄ = v̄x̄x̄ − α2v̄x̄ + v̄(r − v̄ + γ2ū),

(4)

where d, γ1, γ2 are positive, and α1, α2, r are real numbers.
System (4) admits the following three possible equilibria.

• The prey-only equilibrium E1(1, 0).
• The predator-only equilibrium E2(0, r) if r > 0.
• The unique coexistence equilibrium E3(ū∗, v̄∗) with ū∗ = 1−γ1r

1+γ1γ2
and v̄∗ = r+γ2

1+γ1γ2
, if and only if

−γ2 < r < 1/γ1.

It is easy to show that if r ≤ −γ2, then E1 is globally asymptotically stable for the corresponding non-spatial
version of system (4): 

ūt̄ = ū(1− ū− γ1v̄),
v̄t̄ = v̄(r − v̄ + γ2ū),

(5)

which indicates that predators die out if no dispersion is incorporated in the model. Since our interest is
in the spatial spread of both the prey and the predator, we assume the following condition throughout this
paper.

(H1) r > −γ2.

2.2. Main results about the minimal wave speeds

To present main theoretical results, the following notations are needed:

E∗ =

E3, if − γ2 < r < 1/γ1,
E2, if r ≥ 1/γ1,

c∗ := c̄− α2, c∗23 := c̄− α1,

c∗− := c̄+ α2, c∗23− := c̄+ α1,
(6)

c̄ = 2
√
r + γ2. (7)

The following hypotheses are also needed for our theorems.

(H2) c∗ + α1 > 0.
(H2) c∗− − α1 > 0.
(H3) r < 1/γ1 − γ2.

Let

ū(x̄, t̄) = U(s), v̄(x̄, t̄) = V (s), where s = x̄+ ct̄. (8)

The main theoretical results are as follows.

Theorem 2.1. Assume (H1) holds.
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(i) If (H2) or (H3) is valid, system (4) has a positive traveling wave solution (U(x̄+ct̄), V (x̄+ct̄)) satisfying

(U(−∞), V (−∞)) = E1 and (U(+∞), V (+∞)) = E∗ (9)

if and only if c ≥ c∗.
(ii) (H2) or (H3) is valid, system (4) has a positive traveling wave solution (U(x̄−ct̄), V (x̄−ct̄)) satisfying

(U(−∞), V (−∞)) = E∗ and (U(+∞), V (+∞)) = E1 (10)

if and only if c ≥ c∗−.

Theorem 2.2. Assume that (H1) holds and that both E2 and E3 exist, i.e. 0 < r < 1/γ1.

(i) System (4) has a positive traveling wave solution (U(x̄+ ct̄), V (x̄+ ct̄)) satisfying

(U(−∞), V (−∞)) = E2 and (U(+∞), V (+∞)) = E3 (11)

if and only if c ≥ c∗23.
(ii) System (4) has a positive traveling wave solution (U(x̄− ct⃗), V (x̄− ct̄)) satisfying

(U(−∞), V (−∞)) = E3 and (U(+∞), V (+∞)) = E2 (12)

if and only if c ≥ c∗23−.

Remark 2.1. In Theorems 2.1 and 2.2, we assume the upstream of the river is on the left and the downstream
is on the right, that is, the river flows from the left to the right. The waves in Theorem 2.1 are called
predator-invasion traveling waves since the state before invasions is E1(1, 0) where only preys exist
and the state after invasions is E∗ where predators persist (see Fig. 1). The waves in Theorem 2.1(i) are
called upstream traveling waves, which indicates that the predator’s invasion is from the downstream to
the upstream. The waves in Theorem 2.1(ii) are called downstream traveling waves, which indicates that
the predator’s invasion is from the upstream to the downstream. Similarly, the waves in Theorem 2.2 are
called prey-spread traveling waves since the state before invasions is E2(0, r) where only predators exist
and the state after invasions is E3(ū∗, v̄∗) where preys persist. We also call the waves in Theorem 2.2(i) the
upstream traveling waves, which corresponds to the fact that the prey is introduced from the downstream,
and the waves in Theorem 2.2(ii) the downstream traveling waves, which corresponds to the fact that the
prey is introduced from the upstream.

Note that the upstream traveling waves in Theorem 2.1(i) may not actually move to the upstream,
i.e., predators may not really travel upstream because c∗ may be negative due to the large advection pa-
rameter α2. Whether predators can travel upstream in 2.1(i) depends on the sign of c∗.

Remark 2.2. It follows from Theorem 2.1 that c∗ is the upstream minimal wave speed and c∗− is the
downstream minimal wave speed of the predator-invasion traveling waves for (4). Moreover, by (2), (3)
and (8), the predator’s upstream minimal wave speed of our original model (1) is

c̃∗ = 2


d2


r2 + b22

b11
r1


− b2;
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Fig. 1. The traveling of predators in model (4). The upstream is on the left and the downstream is on the right. The initial conditions
are as follows: ū(x̄, 0) = 1, v̄(x̄, 0) = 0.2χ[−1,1](x̄), where χ[−1,1](x̄) is the characteristic function of [−1, 1]. The parameters are
assigned values as follows: d = 1, r = 1, γ1 = 0.2, γ2 = 0.8, α1 = 0.3, α2 = 0.8, where (H2) holds and E∗ = E3.

the predator’s downstream minimal wave speed of our original model (1) is

c̃∗− = 2


d2


r2 + b22

b11
r1


+ b2.

Remark 2.3. It follows from Theorem 2.2 that c∗23 and c∗23− are the upstream minimal wave speed and
the downstream minimal wave speed of the prey-spread traveling waves for (4), respectively. By (2),
(3) and (8), the prey’s upstream minimal wave speed of our original model (1) is

c̃∗23 = 2


d1


r1 −

b12

b21
r2


− b1;

the prey’s downstream minimal wave speed of model (1) is

c̃∗23− = 2


d1


r1 −

b12

b21
r2


+ b1.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. Theorem 2.1(i) will be proved from Sections 3.1 to 3.5. The proof
of Theorem 2.1(ii) will be converted to the proof of Theorem 2.1(i) by some transforms in Section 3.6.
Therefore, we always suppose that one of (H2) and (H3) holds from Sections 3.1 to 3.5, and that one of
(H2) and (H3) holds in Section 3.6.

Substituting (8) into (4) yields 
c1U

′ = dU ′′ + U(1− U − γ1V ),
c2V

′ = V ′′ + V (r − V + γ2U),
(13)

where

c1 = c+ α1, c2 = c+ α2, (14)



T. Zhang, Y. Jin / Nonlinear Analysis: Real World Applications 36 (2017) 203–232 209

and ′ denotes the derivative with respect to s. Thus, a traveling wave solution of (4) corresponds to a solution
of (13).

3.1. Existence of traveling waves connecting E1 when c > c∗

In this subsection we show the existence of positive solutions of (13) connecting E1, that is,

(U(−∞), V (−∞)) = E1(1, 0), (15)

when c > c∗. The existence in the case of c > c∗ is obtained by using Schauder’s fixed-point theorem.
To apply Schauder’s fixed-point theorem an invariant cone will be constructed by a pair of upper–lower
solutions.

Set

H(λ) = λ2 − c2λ+ r + γ2, (16)

and

λ1 = c2 −

c2

2 − c̄2

2 , λ2 = c2 +

c2

2 − c̄2

2 ,

where

c̄ = 2
√
r + γ2

as defined in (7). Note that H(λ) is the characteristic function of the linearization of the second equation of
(13) at E1(1, 0) and that λ1 and λ2 are roots of H(λ). Moreover, H(λ1 + ε) < 0 if 0 < ε < (λ2 − λ1)/2. In
the following, we always assume c > c∗ (i.e., c2 > c̄) till Section 3.3.

Define

U(s) ≡ 1, V (s) = min{eλ1s, r + γ2},
U(s) = max{1− σeβs, δ}, V (s) = max{eλ1s(1−Meεs), 0},

(17)

where positive constants σ, β, ε and M will be determined later and δ satisfies

δ =


0, if (H2) holds;
1− γ1(r + γ2), if (H3) holds.

We will prove in Lemmas 3.1–3.3 that (U(s), V (s)) and (U(s), V (s)) are a pair of upper–lower solutions
of (13). In particular, these upper–lower solutions connect the invaded equilibrium E1 at s = −∞ since

(U(−∞), V (−∞)) = E1, (U(−∞), V (−∞)) = E1.

Such idea of constructing upper–lower solutions in (17) was used in [39] for an integral equation and
was developed in [30] for a nonmonotonic reaction–diffusion system. Note that (17) is a refinement of the
upper–lower solutions in [30] if (H2) does not hold. This refinement can deal with the case with α2 large.

Lemma 3.1. The function V (s) satisfies inequality

c2V
′ ≥ V ′′ + V (r + γ2 − V )

for any s ̸= s̄ := ln(r + γ2)/λ1.

Proof. Firstly, consider the case s < s̄, which implies V (s) = eλ1s. Then we have

V
′′ − c2V

′ + V (r + γ2 − V ) = (λ2
1 − c2λ1 + r + γ2)V − V 2 = −V 2 ≤ 0.

If s > s̄, then we have V (s) = r + γ2. It is obvious that the inequality in this lemma holds in such case.
The proof is completed. �
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Lemma 3.2. There exist positive constants σ (large enough) and β (small enough) such that function U(s)
satisfies

c1U
′ ≤ dU ′′ + U(1− U − γ1V )

for any s ̸= s, where

s := 1
β

ln 1− δ
σ

< 0.

Proof. Firstly, we set

0 < β < λ1, σ > max


1− δ, (r + γ2)−β/λ1

,

which implies s < min{0, s̄}.

We now assume (H2) holds, implying that c1 = c+ α1 > 0 since c > c∗. If s > s, then U(s) = 0 and the
lemma holds. Assume s < s, which implies s < 0, U(s) = 1− σeβs, V (s) = eλ1s. Set

β <
c1

d
, σ >

γ1

(c1 − dβ)β .

Then we have

−c1U
′ + dU ′′ + U(1− U − γ1V ) = c1σβe

βs − dσβ2eβs − γ1Ue
λ1s + σUeβs

=

c1σβ − dσβ2 − γ1Ue

(λ1−β)s

eβs + σUeβs

≥ [(c1 − dβ)βσ − γ1] eβs + σUeβs ≥ 0,

where we have used the fact c1 > dβ and e(λ1−β)s < 1 due to s < 0 and β < λ1.

Now assume (H3) holds. Set

γ1

σ
<
δ

2 , (dβ − c1)β < δ

2 , (18)

which can be guaranteed by setting σ > 2γ1/δ and letting β small enough. If s > s, then U(s) = δ =
1− γ1(r + γ2) and

−c1U
′ + dU ′′ + U(1− U − γ1V ) = γ1U((r + γ2)− V ) ≥ 0.

If s < s, then

−c1U
′ + dU ′′ + U(1− U − γ1V ) =


c1σβ − dσβ2 − γ1Ue

(λ1−β)s + σU

eβs

≥ [(c1 − dβ)βσ − γ1 + σU ] eβs

≥ σ

(c1 − dβ)β − γ1

σ
+ δ

eβs ≥ 0,

where the final inequality holds by (18). The proof is completed. �

Lemma 3.3. Assume ε < β < min{λ1, λ2−λ1}/2. Then for M > 0 large enough, the function V (s) satisfies

c2V
′ ≤ V ′′ + V (r − V + γ2U)

for any s ̸= − lnM/ε.

Proof. It is clear that U(s) = δ if and only if s ≥ s, that V (s) = 0 if and only if s ≥ − lnM/ε, and that
− lnM/ε < s if and only if M > ( 1−δ

σ )−ε/β . Assume M > ( 1−δ
σ )−ε/β in this proof. If s > − lnM/ε, then

eλ1s(1−Meεs) < 0, V (s) = 0 and the inequality in Lemma 3.3 holds.
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Now we consider the case s < − lnM/ε and set M > 1. Then s < 0, s < s,

U(s) = 1− σeβs > 0, V (s) = eλ1s(1−Meεs) > 0.

To prove this lemma, it is enough to show

e−λ1s

V ′′ − c2V

′ + V (r − V + γ2U)

≥ 0.

However, we have

e−λ1s

V ′′ − c2V

′ + V (r − V + γ2U)


= e−λ1s

V ′′ − c2V

′ + (r + γ2)V + γ2(U − 1)V − V 2
= λ2

1 −M(λ1 + ε)2eεs − c2λ1 + c2M(λ1 + ε)eεs + (r + γ2)(1−Meεs)
− γ2σe

βs(1−Meεs)− eλ1s(1−Meεs)2

= (λ2
1 − c2λ1 + r + γ2) +M


−(λ1 + ε)2 + c2(λ1 + ε)− (r + γ2)


eεs

− γ2σe
βs(1−Meεs)− eλ1s(1−Meεs)2

=

−MH(λ1 + ε)− γ2σ(1−Meεs)e(β−ε)s − (1−Meεs)2e(λ1−ε)s


eεs.

Thus we only need to show

−MH(λ1 + ε) ≥ γ2σ(1−Meεs)e(β−ε)s + (1−Meεs)2e(λ1−ε)s. (19)

Since

0 ≤ 1−Meεs ≤ 1, 0 ≤ e(β−ε)s ≤ 1, 0 ≤ e(λ1−ε)s ≤ 1,

it is sufficient to show

−MH(λ1 + ε) ≥ γ2σ + 1 (20)

to prove (19). Since H(λ1 + ε) < 0 by (16), inequality (20) holds if

M > − γ2σ + 1
H(λ1 + ε) .

The proof is completed. �

Remark 3.1. We can select suitable positive constants σ, β, ε and M such that Lemmas 3.1–3.3 hold.
Therefore, we always suppose the conditions for Lemmas 3.1–3.3 hold.

To apply Schauder’s fixed-point theorem, we will introduce a new norm in C(R,R2) and use functions
in (17) to construct an invariant cone. Let µ be a positive constant which can be small enough. For
Φ(s) = (φ1(s), φ2(s)), define

|Φ(·)|µ = max


sup
s∈R
|φ1(s)|e−µ|s|, sup

s∈R
|φ2(s)|e−µ|s|


and

Bµ(R,R2) = {Φ(·) ∈ C(R,R2) : |Φ(·)|µ < +∞}.

We will find the traveling wave solutions in the following set:

Γ = {(U(·), V (·)) ∈ C(R,R2) : U(s) ≤ U(s) ≤ U(s), V (s) ≤ V (s) ≤ V (s) for any s ∈ R}.

Obviously, Γ is closed and convex in Bµ(R,R2).
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Let β1 and β2 be two positively large constants. System (13) can be changed into the following form:
−dU ′′ + c1U

′ + β1U = H1(U(·), V (·))(s),
−V ′′ + c2V

′ + β2V = H2(U(·), V (·))(s),
(21)

where

H1(U(·), V (·))(s) = β1U(s) + U(s)[1− U(s)− γ1V (s)],
H2(U(·), V (·))(s) = β2V (s) + V (s)[r − V (s) + γ2U(s)].

Let Λ11 < 0 < Λ12 be the roots of

dΛ2 − c1Λ− β1 = 0

and Λ21 < 0 < Λ22 be the roots of

Λ2 − c2Λ− β2 = 0.

Define F = (F1, F2) : Γ → C(R,R2) by

F1(U(·), V (·))(s) = 1
dΛ1

 s
−∞

eΛ11(s−t)H1(U, V )(t)dt+
 +∞

s

eΛ12(s−t)H1(U, V )(t)dt

,

F2(U(·), V (·))(s) = 1
Λ2

 s
−∞

eΛ21(s−t)H2(U, V )(t)dt+
 +∞

s

eΛ22(s−t)H2(U, V )(t)dt

,

(22)

where Λ1 = Λ12 − Λ11,Λ2 = Λ22 − Λ21. It is easy to verify that the fixed point of F in Γ is a nonnegative
solution of system (13).

To show the existence of a fixed point of F in Γ , we first verify the conditions for application of Schauder’s
fixed-point theorem to F in the following two lemmas.

Lemma 3.4. F (Γ ) ⊂ Γ for positively large enough β1 and β2.

Proof. Suppose (U(·), V (·)) ∈ Γ , that is

U(s) ≤ U(s) ≤ 1, V (s) ≤ V (s) ≤ V (s)

for any s ∈ R. Then it is sufficient to prove

U(s) ≤ F1(U(·), V (·))(s) ≤ 1, V (s) ≤ F2(U(·), V (·))(s) ≤ V (s)

for any s ∈ R.

For β2 ≥ γ2, we have

H2(U(·), V (·))(t) = β2V (t) + V (t)[r − V (t) + γ2U(t)]
≥ V (t)[γ2 + r − V (t) + γ2U(t)]
≥ V (t)[γ2 + r − (γ2 + r) + γ2U(t)]
≥ 0

for all t ∈ R, which implies that F2(U(·), V (·))(s) ≥ 0 for all s ∈ R. For β2 ≥ r + 2γ2,

∂

∂V
H2(U(·), V (·)) = β2 + r − 2V + γ2U ≥ β2 + r − 2V ≥ β2 + r − 2(r + γ2) ≥ 0.
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Let β2 ≥ r + 2γ2. By (H1), we have β2 ≥ γ2. If s ≥ s0 := − lnM/ε, then V (s) = 0 and, hence,
F2(U(·), V (·))(s) ≥ V (s). If s < s0, then by Lemma 3.3, we have

−V ′′ + c2V
′ + β2V (s) ≤ [β2 + r − V (s)]V (s) + γ2U(s)V (s)

≤ [β2 + r − V (s)]V (s) + γ2U(s)V (s)
= H2(U, V )(s).

This implies that

F2(U(·), V (·))(s) = 1
Λ2

 s
−∞

eΛ21(s−t)H2(U, V )(t)dt+
 +∞

s

eΛ22(s−t)H2(U, V )(t)dt


≥ 1
Λ2

 s
−∞

eΛ21(s−t)[−V ′′(t) + c2V
′(t) + β2V (t)]dt

+ 1
Λ2

 s0

s

eΛ22(s−t)[−V ′′(t) + c2V
′(t) + β2V (t)]dt

+ 1
Λ2

 +∞

s0

eΛ22(s−t)[−V ′′(t) + c2V
′(t) + β2V (t)]dt

= 1
Λ2


−V ′(s)− Λ21V (s) + c2V (s) + eΛ21s(−Λ2

21 + c2Λ21 + β2)
 s
−∞

e−Λ21tV (t)dt


+ 1
Λ2


eΛ22(s−s0)(−V ′(s0 − 0) + c2V (s0)− Λ22V (s0)) + V ′(s)− c2V (s) + Λ22V (s)


+ eΛ22s

Λ2


(−Λ2

22 + c2Λ22 + β2)
 s0

s

e−Λ22tV (t)dt


+ 1
Λ2


V ′(s0 + 0)− c2V (s0) + Λ22V (s0)

+eΛ22s0(−Λ2
22 + c2Λ22 + β2)

 ∞
s0

e−Λ22tV (t)dt


= V (s) + 1
Λ2
eΛ22(s−s0)[V ′(s0 + 0)− V ′(s0 − 0)]

≥ V (s),

where we use the facts V (s) = eλ1s(1−Meεs) for s ≤ s0, V (s) = 0 for s ≥ s0, V ′(s0 +0) = 0, V ′(s0−0) ≤ 0,
and the definitions of Λ21, Λ22 and Λ2.

In conclusion, we have obtained that

F2(U(·), V (·))(s) ≥ V (s)

for any s ∈ R.

Similarly, it can be proved that

U(s) ≤ F1(U(·), V (·))(s) ≤ 1, F2(U(·), V (·))(s) ≤ V (s)

for any s ∈ R. The proof is completed. �

Lemma 3.5. For µ small enough, F = (F1, F2) : Γ → C(R,R2) is continuous and compact with respect to
the norm | · |µ in Bµ(R,R2).

The proof of Lemma 3.5 is similar to those in [23,30], so we refer readers to [23,30].
We now establish the existence of traveling waves connecting E1 when c > c∗ in Lemma 3.6.
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Lemma 3.6. Let c > c∗ (i.e. c2 > c̄), then (13) has a positive solution (U(s), V (s)) satisfying

(U(−∞), V (−∞)) = E1(1, 0), U(s) < 1, V (s) ≤ r + γ2

for any s ∈ R.

Proof. Combination of Schauder’s fixed-point theorem, Lemmas 3.4 and 3.5 implies that (13) has a
nonnegative solution (U(·), V (·)) ∈ Γ such that

(U(−∞), V (−∞))→ (1, 0).

Let n be any fixed positive integer such that n > max{−s, lnM/ε}, where s, ε and M are determined in
Lemmas 3.2 and 3.3. Since U(s) ≥ U(s) for all s < s, we have U(s) > 0 for all s ∈ [−n, n] by applying
Harnack Inequality (refer to Theorem 2.1 in [40]) for the first equality of (13). It then follows that U(s) > 0
for all s ∈ R since n is any large positive integer. It can be similarly proved that V (s) > 0 for all s ∈ R.

If U(s1) = 1, then it follows that U ′(s1) = 0, U ′′(s1) ≤ 0 since U(s) ≤ 1 for any s ∈ R. From the first
equation of (13) it can be inferred that dU ′′(s1)− γ1V (s1) = 0, a contradiction, which implies U(s) < 1 for
any s ∈ R. �

3.2. Existence of traveling waves connecting E1 and E∗ when c > c∗

In this subsection we use LaSalle’s invariance principle to show that the traveling wave solutions we
obtained in Lemma 3.6 also connect E∗. To this end, we first give a lemma to show the boundedness of
|U ′(s)/U(s)| and |V ′(s)/V (s)|.

Lemma 3.7. Assume that ψ(s) > 0 for all s ∈ R and that ψ(s) satisfies

ψ′′ + p1(s)ψ′ + p2(s)ψ + p3(s) = 0, s ∈ R,

where |p1(s)| ≤M1 and |p2(s)| ≤M1 for some positive constant M1 and p3(s) ≥ 0. Then there exists positive
constant M2 depending only on M1 such thatψ′(s)ψ(s)

 ≤M2, for all s ∈ R.

Proof. Set ϕ = lnψ,ψ = eϕ. Substituting this transform into the equation ψ(s) satisfies yields

ϕ′′ + (ϕ′)2 + p1(s)ϕ′ + p2(s) + p3(s)e−ϕ = 0.

It follows by setting ϕ′ = w that

w′(s) = −w2(s)− p1(s)w(s)− p2(s)− p3(s)e−ϕ.

By the boundedness of p1 and p2 and positivity of p3, there exists M2 > 0 depending only on M1 such that
w′ < 0 for all |w| ≥ M2. Assume that w(s1) ≤ −M2 for some s1 ∈ R. Then w′(s) < 0 and w(s) ≤ −M2
for all s ≥ s1. Note that w(s) = ϕ′(s) = ψ′(s)/ψ(s). Then we have ψ′(s)/ψ(s) ≤ −M2 for all s ≥ s1, which
implies that ψ′(s) < 0 for all s ≥ s1 since ψ(s) > 0. Therefore, ψ(s) → −∞ as s → ∞, contradicting the
fact that ψ > 0. Therefore, w(s) ≥ −M2 for all s ∈ R. On the other hand, assume that w(s2) ≥M2 for some
s2 ∈ R. Then since w′(s2) < 0 we have w(s) > M2 for s < s2. Hence, ψ′(s) > 0 for all s < s2. This implies
that ψ(s) → −∞ as s → −∞, a contradiction to the fact ψ > 0. Therefore, w(s) ≤ M2 for all s ∈ R. As a
conclusion, we then have w(s) ∈ [−M2,M2] for all s ∈ R. �
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The following corollary follows from Lemma 3.7 and the boundedness of the traveling wave solution
(U, V ).

Corollary 3.1. There exist Mu(c) > 0 and Mv(c) > 0 such that the traveling wave solution (U, V )
in Lemma 3.6 satisfies U ′(s)U(s)

 ≤Mu(c), V ′(s)V (s)

 ≤Mv(c), ∀s ∈ R.

In addition, Mu(c) and Mv(c) can be chosen to be bounded on c ∈ (c∗, c∗ + 1].

Remark 3.2. In Section of Discussion, we will show how Lemma 3.7 is applied to more complex models.

Next we will construct a Lyapunov function and use LaSalle’s invariance principle to prove that the
traveling wave solution (U(s), V (s)), obtained in Lemma 3.6, also connects the equilibrium E∗ at s = +∞.

Lemma 3.8. If c > c∗, then (4) admits a positive traveling wave solution (U(x̄ + ct̄), V (x̄ + ct̄)) satisfying
boundary condition (9).

Proof. System (13) can be rewritten as
U ′ = W,

dW ′ = c1W − U(1− U − γ1V ),
V ′ = Z,

Z ′ = c2Z − V (r − V + γ2U).

(23)

Denote L = L1(U,W, V, Z) + L2(U,W, V, Z), where

L1(U,W, V, Z) = γ2r(c1U − dW ),

L2(U,W, V, Z) = c2V − Z + r
Z

V
− c2r lnV.

Since the traveling wave solution (U(s), V (s)) satisfies (23), then simple calculations yield that the derivative
of L2 along traveling wave solution (U(s), V (s)) satisfies

dL2

ds
= c2V

′ − Z ′ + r
Z ′ − c2V

′

V
− rZV

′

V 2

= c2V
′ − Z ′

V
(V − r)− rZ2

V 2

= (r − V + γ2U)(V − r)− rZ2

V 2 .

Then we have
dL

ds
= γ2rU(1− U − γ1V ) + (r − V + γ2U)(V − r)− rZ2

V 2

= γ2rU(1− γ1V )− γ2rU
2 − (r − V )2 + γ2U(V − r)− rZ2

V 2

= −γ2UV (γ1r − 1)− γ2rU
2 − (r − V )2 − rZ2

V 2 .

Now suppose γ1r ≥ 1. From Lemma 3.6 and Corollary 3.1 it follows that L(s) is bounded. It is clear that
L′(s) = 0 if and only if U(s) = Z(s) = 0 and V (s) = r, and that the maximal invariant set of

{(U,W, V, Z) : L′(s) = 0}
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consists of only one point, i.e. the equilibrium (0, 0, r, 0). Then LaSalle’s invariance principle [41, Theorem
6.4] implies that the traveling wave solution (U(s), V (s)) in Lemma 3.6 satisfies

(U(+∞), V (+∞)) = E2(0, r). (24)

If γ1r < 1 is satisfied, we will construct the Lyapunov function as follows:

L0 = γ2

γ1


c1U − dW + dū∗W

U
− c1ū

∗ lnU


+ c2V − Z + v̄∗Z

V
− c2v̄

∗ lnV.

It is easy to show that the derivative of L0 along the traveling wave solution (U(s), V (s)) satisfies
dL0

ds
= −γ2

γ1
(U − ū∗)2 − γ2dū

∗W 2

γ1U2 − (V − v̄∗)2 − v̄∗Z2

V 2 .

Similar to the proof for γ1r ≥ 1, we can show that

(U(+∞), V (+∞)) = E3(ū∗, v̄∗).

In conclusion, we always have

(U(+∞), V (+∞)) = E∗.

Then applying Lemma 3.6 completes the proof of this lemma. �

3.3. Existence of traveling waves when c = c∗

Lemma 3.9. (4) has a positive traveling wave solution (U(x̄ + c∗t̄), V (x̄ + c∗t̄)) satisfying boundary
condition (9).

Proof. We first choose a positive constant u0 such that

max

− r

γ2
, ū∗, 0, 1− γ1

r + γ2

2 + γ1γ2


< u0 < 1, (25)

where ū∗ is defined in Section 2.1. This can be guaranteed by (H1) (i.e., r + γ2 > 0) and

1− ū∗ = 1− 1− γ1r

1 + γ1γ2
= γ1(r + γ2)

1 + γ1γ2
> 0.

Note that

u0 > 1− γ1
r + γ2

2 + γ1γ2
⇐⇒ 1− γ1ϱ < u0,

where ϱ := (r + γ2u0)/2.

Claim 1. Let (U(s), V (s)), s ∈ R be the bounded positive solution of (13) with c2 > c̄ in Corollary 3.1 where
c̄ is defined in (7). Then we have

lim inf
s→+∞

U(s) ≤ u0. (26)

We assume, on the contrary, that

lim inf
s→+∞

U(s) > u0.

We first consider the case where V (s) is not monotonic for large s, Then there exists a sequence {sn}n∈N
with sn → +∞ such that

V ′(sn) = 0, V ′′(sn) ≥ 0, lim inf
s→+∞

V (s) = lim
n→+∞

V (sn).
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It follows from the second equality of (13) that

V (sn) ≥ r + γ2U(sn) > r + γ2u0 > ϱ (27)

for all large n, which implies that V (s) > ϱ and 1− U(s)− γ1V (s) < 1− u0 − γ1ϱ < 0. This, together with
the first equality of (13), yields U ′(s) < 0 for all large s, and hence, U(s) is monotonic for large s. Therefore,
it follows from the boundedness of U that U(+∞) (≥ u0) exists and U ′(+∞) = U ′′(+∞) = 0. Then by
the first equality of (13) we obtain that V (+∞) exists and V (+∞) > ϱ > 0. Now we suppose that V (s) is
monotonic for large s. Since V is bounded, V (+∞) exists. If V (+∞) = 0, it follows that

r − V (s) + γ2U(s) ≥ r − V (s) + γ2u0 ≥ ϱ > 0

for large s. By the monotonicity of V (s), V (s) ≥ 0, and V (+∞) = 0, we can obtain V ′(s) ≤ 0 for large
s. Then the second equality of (13) implies that V ′′(s) < 0 for large s. Thus there exists s0 such that
V ′(s) ≤ V ′(s0) < 0 for s > s0, implying V (+∞) = −∞, a contradiction. In conclusion, we have shown
V (+∞) exists and V (+∞) > 0 whether V (s) is monotonic or not for large s. Hence, V ′(+∞) = V ′′(+∞) = 0
by the boundedness of V (s) and V ′(s) on s ∈ R. It then follows from the second equation of (13) that
r − V (+∞) + γ2U(+∞) = 0, which implies the existence of U(+∞) and hence U ′(+∞) = U ′′(+∞) = 0.
The first equation of (13) then implies 1− U(+∞)− γ1V (+∞) = 0. This means that (U(+∞), V (+∞)) is
the coexistence equilibrium E3(ū∗, v̄∗), which contradicts the fact U(+∞) ≥ u0 and assumptions in (25).
The proof of Claim 1 is completed.

Let c̄n := c∗ + 1/n for positive integer n. By Lemma 3.6, there exists a positive solution Φn(·) =
(Un(·), Vn(·)) ∈ Γ of system (13) with c = c̄n such that

(Un(−∞), Vn(−∞)) = (1, 0).

By Claim 1, we may assume by a translation that

Un(0) = (1 + u0)/2, Un(s) ≥ (1 + u0)/2, ∀s < 0. (28)

Corollary 3.1, Eqs. (13) and Arzela–Ascoli’s theorem imply that there exists a subsequence {c̄nk} such
that {Φnk(·)} converges to a non-negative function Ψ(·) := (U(·), V (·)) in function space C2

loc(R), where
Ψ(·) satisfies 

(c∗ + α1)U ′ = dU ′′ + U(1− U − γ1V ),
c̄V ′ = V ′′ + V (r − V + γ2U),

with

U(0) = 1 + u0

2 ,
1 + u0

2 ≤ U(s) ≤ 1, V (s) ≥ 0, for all s < 0. (29)

Assume V (s) = 0 for all s ∈ R and we will get a contradiction in the following. Then U(s) satisfies

(c∗ + α1)U ′ = dU ′′ + U(1− U). (30)

Let a be a positive constant. Obviously, we have U(0) > 0 from (29). Then by using Harnack inequality [35,
Section 6.4.3] on [−a, a], it follows that U(s) > 0 for all s ∈ [−a, a]. We then obtain that U(s) > 0 for all
s ∈ R since a is arbitrarily chosen. It follows from 0 < U(s) ≤ 1 for all s ∈ R that U ′(s∗) = 0 if U(s∗) = 1.
Since U(s) ≡ 1 is the unique solution of equation (30) with initial conditions U(s∗) = 1, U ′(s∗) = 0 and we
have U(0) < 1 by (29), it follows that U(s) < 1 for all s ∈ R. Then (30) implies that U(s) is monotonic in
R, and U(−1) ≥ U(0) (see (29)) furthermore implies that U(s) is monotonically decreasing in R and that
U(+∞) exists. It is clear that U(+∞) = 0. If (H2) holds, i.e. c∗+α1 > 0, then we have U ′(s) < 0, U ′′(s) < 0,
implying U ′(s) ≤ U ′(0) < 0. It follows that U(+∞) = −∞, a contradiction. If (H3) holds, it follows that



218 T. Zhang, Y. Jin / Nonlinear Analysis: Real World Applications 36 (2017) 203–232

Un(s) ≥ U(s) ≥ δ > 0 for any n and any s ∈ R, implying that U(s) ≥ δ > 0 for any s ∈ [0,+∞], a
contradiction. Therefore, there exists s0 such that V (s0) > 0, and Harnack inequality furthermore yields
V (s) > 0 for all s ∈ R. Similar to the proof of Claim 1, it can be shown that (U(−∞), V (−∞)) is an
equilibrium. Since U(−∞) ≥ u0 and u0 satisfies (25), we obtain that U(−∞) cannot be 0 or ū∗, and hence,
(U(−∞), V (−∞)) = E1(1, 0). Note that the inequality in Corollary 3.1 and Lemma 3.8 also hold in the case
c = c∗. Then we have (U(+∞), V (+∞)) = E∗. �

Remark 3.3. Actually, Claim 1 can be directly proved by Lemma 3.8. However, the proof of Lemma 3.8
depends on the construction of a Lyapunov function, so that the proof of Claim 1 also depends on the
construction of a Lyapunov function. In most cases, it is difficult to construct a Lyapunov function. Hence,
the proof of Claim 1 in this paper can be used to prove the existence of positive traveling wave solutions
with minimal wave speed c∗ even if we cannot construct a Lyapunov function. Especially, the idea of the
proof of Claim 1 can be applied to the general model in [30].

3.4. Nonexistence of traveling waves when c < c∗

In this section we show the nonexistence of traveling wave solutions when c < c∗.

Lemma 3.10. System (13) has no positive solutions (U(s), V (s)) satisfying (9) if c < c∗.

Proof. We will prove this lemma by a contradiction. Suppose that (13) has a positive solution (U(s), V (s))
satisfying (9). It is evident that c < c∗ is equivalent to c2 < c̄ = 2

√
r + γ2. It is easy to show that the

equilibrium (1, 0, 0, 0) of (23) is hyperbolic. Then it follows by Stable Manifold Theorem in Perko [42] that
there exists a positive constant ω such that

sup
s<0
{V (s)e−ωs} < +∞, sup

s<0
{|V ′(s)|e−ωs} < +∞, sup

s<0
{|V ′′(s)|e−ωs} < +∞. (31)

To continue the proof, we introduce the definition of negative one-sided Laplace transform:

V (λ) = N [V (·)](λ) :=
 0

−∞
e−λsV (s)ds

for λ ≥ 0. By this definition we know that V (λ) is increasing on [0, λ∗), where λ∗ = +∞ or λ∗ < +∞ with
limλ→λ∗− V (λ) = +∞. It follows from (31) that λ∗ ≥ ω.

Note that Corollary 3.1 actually holds for any real number c. It follows from Corollary 3.1 that 0

−∞
e−λξ|V ′(ξ)|dξ ≤Mv(c)

 0

−∞
e−λξV (ξ)dξ < +∞,

implying that
 0
−∞ e−λξV ′(ξ)dξ is convergent. Then it follows from

e−λξV (ξ)
′ = e−λξV ′(ξ)− λe−λξV (ξ)

that

V (0)− e−λsV (s) =
 0

s

e−λξV ′(ξ)dξ − λ
 0

s

e−λξV (ξ)dξ.

We obtain that lims→−∞ e−λsV (s) exists since the right-hand side of above equality is convergent if s = −∞.
Then lims→−∞ e−λsV (s) = 0 since lims→−∞ e−λsV (s) ̸= 0 implies that

 0
−∞ e−λsV (s)ds is divergent. It can
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be similarly shown that lims→−∞ e−λsV ′(s) = 0. Then we can verify that N [·] satisfies

N [V ′(·)](λ) = λV (λ) + V (0)− lim
s→−∞

e−λsV (s)

= λV (λ) + V (0),
N [V ′′(·)](λ) = λ2V (λ) + λV (0) + V ′(0)− lim

s→−∞
e−λsV ′(s)− λ lim

s→−∞
e−λsV (s)

= λ2V (λ) + λV (0) + V ′(0),

(32)

for all λ ∈ [0, λ∗).

The second equation of (13) can be restated as

L[V (·)](s) = [γ2(1− U(s)) + V (s)]V (s)

where

L[V (·)](s) := V ′′(s)− c2V
′(s) + (γ2 + r)V (s).

Define ρ = min{H(λ) : λ ≥ ω}, where H(λ) is defined in (16). It follows from condition c2 < c̄ that
ρ > 0. Since (13) is autonomous, for any a ∈ R, (U(s − a), V (s − a)) is also a solution of (13) satisfying
lims→−∞ U(s− a) = 1 and lims→−∞ V (s− a) = 0. By using the fact U(−∞) = 1 and V (−∞) = 0 we can
obtain that 1 − U(s) and V (s) can be small enough when s is negatively large. We then can choose some
a0 ∈ R such that (U(s− a0), V (s− a0)) satisfies

γ2(1− U(s− a0)) + V (s− a0) < ρ

2 , ∀s ≤ 0.

Consequently, without losing generality we can assume

γ2(1− U(s)) + V (s) < ρ

2
for all s ≤ 0, which implies

L[V (·)](s) ≤ ρ

2V (s).

Applying the operator N [·] to this inequality and using the properties of N [·] in (32) yield that
ρ

2V (λ) ≥ N [L[V (·)](·)](λ) = H(λ)V (λ) + q(λ),

where

q(λ) = V ′(0) + (λ− c2)V (0).

Consequently, we have

H(λ) :=

H(λ)− ρ

2


V (λ) + q(λ) ≤ 0.

If λ∗ < +∞, then limλ→λ∗− V (λ) = +∞ and, therefore, limλ→λ∗− H(λ) = +∞, which is a contradiction.
If λ∗ = +∞, we have that limλ→+∞H(λ) = +∞ by the monotonicity of V (λ) and the definitions of H(λ)
and q(λ), which is still a contradiction. The proof is completed. �

3.5. Proof of Theorem 2.1(i)

The proof of Theorem 2.1(i) can be completed by combining Lemmas 3.8–3.10.
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3.6. Proof of Theorem 2.1(ii)

Let (U(x̄ − ct̄), V (x̄ − ct̄)) be the positive traveling wave solutions of system (4) satisfying boundary
condition (10). Substituting (U(ξ), V (ξ)), ξ = x̄− ct̄ into (4) yields

(−c+ α1)U ′ = dU ′′ + U(1− U − γ1V ),
(−c+ α2)V ′ = V ′′ + V (r − V + γ2U),

(33)

where the derivative is with respect to ξ. By setting

ξ = −s, U(s) = U(ξ), V(s) = V (ξ),

we have 
(c− α1)U ′ = dU ′′ + U(1− U − γ1V),
(c− α2)V ′ = V ′′ + V(r − V + γ2U),

and

(U(−∞),V(−∞)) = E1, (U(+∞),V(+∞)) = E∗,

where the derivative is with respect to s. Then Theorem 2.1(ii) can be obtained from Theorem 2.1(i).

4. Proof of Theorem 2.2

We firstly give some notations:

µ1 = c1 −

c2

1 − c̄2
23

2d , µ2 = c1 +

c2

1 − c̄2
23

2d ,

P (µ) := dµ2 − c1µ+ 1− γ1r,

where c̄23 := 2

d(1− γ1r). It is clear that µ1 and µ2 are roots of P (µ) = 0. Define

U(s) = min{eµ1s, 1− γ1r}, V (s) = r + min{σeβs, γ2(1− γ1r)},
U(s) = max{eµ1s(1−Meεs), 0}, V (s) = r,

(34)

where positive constants σ, β, ε and M will be determined later. Note that most notations used in this section
are same as those in Section 3, which, however, will not cause confusion since this section has no connections
with Section 3 except the proof ideas.

Similar to the arguments in Section 3, we present the following three lemmas.

Lemma 4.1. The function U(s) satisfies inequality

c1U
′ ≥ dU ′′ + U(1− U − γ1V )

for any s ̸= s̄u := ln(1− γ1r)/µ1.

Proof. Firstly, consider the case s < s̄u, which implies U(s) = eµ1s. Then we have

dU
′′ − c1U

′ + U(1− U − γ1V ) = (dµ2
1 − c1µ1 + 1− γ1r − U)eµ1s = −Ueµ1s ≤ 0.

If s > s̄u, then we have U(s) = 1− γ1r. It is obvious that the inequality in this lemma holds. The proof
is completed. �
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Lemma 4.2. There exist positive constants σ (large enough) and β (small enough) such that function V (s)
satisfies

c2V
′ ≥ V ′′ + V (r − V + γ2U)

for any s ̸= s̄v, where

s̄v := 1
β

ln γ2(1− γ1r)
σ

< 0.

Proof. Firstly, we set

0 < β < µ1, σ > max

γ2(1− γ1r), γ2(1− γ1r)1−β/µ1


,

which implies s̄v < min{0, s̄u}.

If s > s̄v, then we have V = r + γ2(1− γ1r),

V
′′ − c2V + V (r − V + γ2U) = V [−γ2(1− γ1r) + γ2U ]

≤ V [−γ2(1− γ1r) + γ2(1− γ1r)] = 0.

Assume s < s̄v, which implies s < 0, U(s) = eµ1s, V (s) = r + σeβs. Then we have

V
′′ − c2V + V (r − V + γ2U) = (σβ2 − c2σβ)eβs + V (−σeβs + γ2e

µ1s).

It is easy to show that
γ2

σ
e−βs̄veµ1s̄v <

1
2 ⇐⇒ σ > γ22β/µ1(1− γ1r)1−β/µ1 .

By setting β small enough and σ large enough, we have
1

σeβs


V
′′ − c2V + V (r − V + γ2U)


= β(β − c2) + V


−1 + γ2

σ
e−βseµ1s


≤ β(β − c2) + V


−1 + 1

2


≤ r

2 −
r

2 = 0.

Thus the proof is completed. �

Lemma 4.3. Assume ε < β < min{µ1, µ2−µ1}/2. Then for M > 0 large enough, the function U(s) satisfies

c1U
′ ≤ dU ′′ + U(1− U − γ1V )

for any s ̸= su := − lnM/ε.

Proof. It is clear that U(s) = 0 if and only if s ≥ su, that V = r + γ2(1 − γ1r) if and only if s ≥ s̄v, and
that su < s̄v if and only if

M >


σ

γ2(1− γ1r)

ε/β
.

Assume above inequality is satisfied and M > 1, implying su < min{0, s̄v}. If s > su, then U(s) = 0 and
the inequality in Lemma 4.3 holds.

Now we consider the case s < su. Then s < 0, s < s̄v, and

U(s) = eµ1s(1−Meεs) > 0, V (s) = r + σeβs.
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To prove this lemma, it suffices to show

e−µ1s

dU ′′ − c1U

′ + U(1− U − γ1V )

≥ 0.

However, we have

e−µ1s

dU ′′ − c1U

′ + U(1− U − γ1V )


= dµ2
1 − dM(µ1 + ε)2eεs − c1µ1 + c1M(µ1 + ε)eεs

+ (1−Meεs)(1− γ1r − U − γ1σe
βs)

= (dµ2
1 − c1µ1 + 1− γ1r)−M


d(µ1 + ε)2 − c1(µ1 + ε) + 1− γ1r


eεs

− (1−Meεs)(U + γ1σe
βs)

=

−MP (µ1 + ε)− (1−Meεs)2e(µ1−ε)s − γ1σ(1−Meεs)e(β−ε)s


eεs

≥ [−MP (µ1 + ε)− 1− γ1σ] eεs,

where the final inequality holds since

0 ≤ 1−Meεs ≤ 1, 0 ≤ e(β−ε)s ≤ 1, 0 ≤ e(µ1−ε)s ≤ 1.

Because P (µ1 + ε) < 0 holds for any 0 < ε < µ2 − µ1, setting

M >
1 + γ1σ

−P (µ1 + ε)
completes the proof. �

Then we can prove Theorem 2.2 by arguments completely similar to those in Section 3. Actually, the
proof of Theorem 2.2 is simpler than that of Theorem 2.1. The hypotheses (H2), (H3) and (H2) are needed
for the proof of Theorem 2.1 for technical reasons, but are not needed for the proof of Theorem 2.2. We
conjecture that the hypotheses (H2), (H3) and (H2) are not necessary for Theorem 2.1 and leave this as
a future problem.

5. Biological interpretations of the minimal wave speeds

In this section, we give some biological interpretations of Theorems 2.1 and 2.2 for model (1).
By (3), the assumptions for model (1) are

(H1): r2b11 + r1b22 > 0,

(H2): 2

d2


r2 + b22

b11
r1


− b2 + b1 > 0,

(H2): 2

d2


r2 + b22

b11
r1


+ b2 − b1 > 0, and

(H3): r2r1 <
b21
b12
− b22
b11

.

The results in Theorems 2.1 and 2.2 then become the following.

• Under (H1) and one of (H2) and (H3), the predator’s upstream minimal wave speed of model (1) is

c̃∗ = 2


d2


r2 + b22

b11
r1


− b2.
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• Under (H1) and one of (H2) and (H3), the predator’s downstream minimal wave speed of model (1) is

c̃∗− = 2


d2


r2 + b22

b11
r1


+ b2.

• Under (H1), the prey’s upstream minimal wave speed and downstream minimal wave speed of model (1)
are, respectively,

c̃∗23 = 2


d1


r1 −

b12

b21
r2


− b1

and

c̃∗23− = 2


d1


r1 −

b12

b21
r2


+ b1.

5.1. The predator’s invasion speed

The minimal wave speeds c̃∗ and c̃∗− are monotonically increasing with respect to the diffusion rate (d2)
and the growth rate (r2) of the predator, the growth rate (r1) of the prey, and the conversion rate (b22);
they are monotonically decreasing with respect to the density-dependent rate (b11) of the prey. c̃∗ decreases
in the advection rate (b2) of the predator but c̃∗− increases in b2. The advection rate of the prey (b1) is not
involved in the formulas of c̃∗ and c̃∗−, but c̃∗ and c̃∗− rely on it since b1 is in the conditions (H2) and (H2)
which affect the existence of c̃∗ and c̃∗−. The predation rate (b12) should be considered to be related to the
conversion rate b22 in some sense. c̃∗ and c̃∗− do not depend on the diffusion rate of the prey (d1) and the
density-dependent rate (b21) of the predator.

If the predator is a generalist (r2 > 0), then the growth of the predator does not only depend on the
prey, and hence, there is a chance for existence of a traveling wave connecting the prey-only equilibrium
and the predator-only equilibrium. In this case, assumption (H1) is automatically true. If the predator
is a specialist (r2 < 0), then the growth of the predator only depends on the prey. Hence, the predator
cannot exist without the prey and there might be traveling waves connecting the prey-only equilibrium and
the coexistence equilibrium. In this case, (H1) is true provided that the growth rate of the predator r2 is
negatively small.

Note that

c̄ = 2


d2


r2 + b22

b11
r1


is the minimal wave speed of traveling waves for (1) without advections (i.e., when b1 = b2 = 0). Therefore,
if c̄ > b2 − b1, the assumption (H2) is true, and hence the minimal wave speed c̃∗ of traveling waves for (1)
can be defined. If c̄ > b1− b2, then (H2) is true and c̃∗− is defined. Here we do not require that the advection
rates of the prey and the predator are the same (i.e., b1 = b2) or in the same direction (i.e., b1 and b2 have
the same sign).

When the conversion rate b22 = 0, the predation of prey does not contribute to the growth of the predator.
The prey system and the predator system are decoupled. The minimal wave speeds of (1) coincide with the
minimal wave speeds of traveling waves for Fisher’s equation for the predator: 2

√
d2r2 ± b2.
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Note that x = −∞ and x = ∞ represent the upstream end and the downstream end of the river,
respectively. Then the traveling waves (U(x̄ + ct̄), V (x̄ + ct̄)) of (4) in Theorem 2.1 move to the upstream
if c > 0 and to the downstream if c < 0. Since these traveling waves connect the prey-only equilibrium
to a predator-present equilibrium, this corresponds to the situation where the predator invades from the
downstream to the upstream of a river that is occupied by the prey at its carrying capacity. The wave profile
of the traveling waves shows the resulted distributions of the prey and the predator in the river along such
invasion. Therefore, when c̃∗ > 0, the traveling wave (U(x+ c̃∗t),V(x+ c̃∗t)) of (1) moves to the upstream
and the predator’s invasion is successful; when c̃∗ < 0, the traveling wave (U(x+ c̃∗t),V(x+ c̃∗t)) moves to
the downstream so we expect both the prey and the predator to be washed to the downstream, and hence,
the predator’s invasion is not successful. Similarly, the traveling waves (U(x̄ − ct̄), V (x̄ − ct̄)) move to the
downstream if c > 0 and correspond to the situation where the predator invades from the upstream to the
downstream of a river that is occupied by the prey at its carrying capacity. If b2 > 0, then c̃∗− > 0 is always
valid and hence such invasion is successful.

For partial differential equations for a single species such as Fisher’s equation or for interacting populations
such as cooperative or competitive models, it has been proved that the minimal wave speed of traveling waves
coincides with the spreading speed, which is the rate at which a population asymptotically spreads in the
spatial environment; see e.g., [43,44]. However, this has not been proved for predator–prey models, so we
cannot say that our minimal wave speed c̃∗ (c̃∗−) is the spreading speed of (1) in the upstream (downstream)
direction. As a result of the biological interpretation in the above paragraph, we use c̃∗ (c̃∗−) to represent the
upstream (downstream) invasion speed of the predator in a river or stream environment, which also follows
the same idea as in [3]. Then Theorem 2.1 coincides with the analysis in [3] and indicates that when the
prey and the predator coexist in the stream, they spread at the same speed c̃∗ in the upstream direction.
However, our result also implies different information that this common invasion speed c̃∗ does not only
depend on the spread of the prey, but also on (or mainly on) the spread of the predator (see the diffusion
(d2), advection (b2), growth (r2) and conversion (b22) in the expression of c̃∗). In particular, we consider the
following situations.

(a) When both the prey and the predator are subjected to the flow and the advection rates are the same,
i.e., b1 = b2 > 0, (H2) follows from (H1). Thus, if r2b11 + r1b22 > 0, then the prey and the predator
spread to the upstream at the speed c̃∗ if c̃∗ > 0 and only to the downstream if c̃∗ < 0. This implies
that in such a river (or a similar advective environment), a generalist (i.e., r2 > 0) or a specialist with
small death rate (i.e., r2 < 0 but |r2| is small) can always spread with its prey at the same speed in
the upstream direction. The relationship between c̃∗ (and c̃∗−) and the growth rate r2 of the predator is
shown in Fig. 2(a). In this example, the parameter values are r1 = 0.1, b11 = 0.05, b22 = 0.01, d2 = 0.02,
b1 = 0.05, and b2 = 0.05; the assumptions (H1) and (H2) are valid provided that r2 > −0.02. The prey
and the predator will both be washed to the downstream if the predator is a specialist or if the predator
is a generalist but does not rely much on other food sources (r2 < 0 or r2 > 0 but |r2| is small) since
c̃∗ < 0. The prey and the predator will both spread to the upstream if the predator is a generalist and
greatly relies on other food sources (r2 is positively large) since c̃∗ > 0.

(b) When the advection rates for the prey and the predator are not the same (i.e., b1 ̸= b2) or even in opposite
directions (i.e., b1b2 < 0), under the condition r2b11+r1b22 > 0, the prey and the predator will eventually
spread at the same speed if b2 ≤ b1 or 0 < b2 − b1 < c̄. This is not hard to understand. The prey may
try to move to the opposite direction of the movement of the predator, but it will still be caught by the
predator and proceed to the predators’ moving direction eventually, provided that the prey’s advection
rate is small. For example, the mayfly flies to the upstream which results in a positive advection rate (i.e.,
−b1 > 0) in (1), while its predator, say, some small fish, suffers a negative advection rate (i.e., −b2 < 0)
(see, e.g., [45–47]), but they will spread at the same rate to the upstream under suitable conditions. The
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Fig. 2. The relationships between the predator-invasion minimal wave speeds of (1) and the growth rate of the predator r2 and
the advection rate b2, respectively. Parameter values are: (a) r1 = 0.1, b11 = 0.05, b22 = 0.01, d2 = 0.02, b1 = 0.05, b2 = 0.05; (b)
r1 = 0.1, r2 = 0.01, b11 = 0.05, b22 = 0.01, d2 = 0.02, b1 = 0.05; (c) r1 = 0.1, b11 = 0.05, b22 = 0.01, d2 = 0.02, b1 = 0.05, b2 = 0.

relationship between c̃∗ (and c̃∗−) and the advection rate b2 of the predator is shown in Fig. 2(b). In this
example, the parameter values are r1 = 0.1, r2 = 0.01, b11 = 0.05, b22 = 0.01, d2 = 0.02, and b1 = 0.05;
the assumption (H1) is obviously true and (H2) is true provided that b2 < 0.099. We have the following
observations in the case that the prey is subjected to the water flow (i.e., b1 > 0) and the predator is a
generalist. If the predator is also subjected to the flow with a large advection rate (i.e., b2 > 0 and b2 is
large), then the prey and the predator will both be washed to the downstream as c̃∗ < 0. If the predator
is subjected to the flow with a small advection rate (i.e., b2 > 0 and b2 is small) or if the predator is
able to intentionally move only to the upstream at a small rate (i.e., b2 < 0 and |b2| is small), then the
prey and the predator may spread to the upstream as c̃∗ > 0. If the predator only drifts to the upstream
at a large rate (i.e., b2 < 0 and |b2| is large), then both the prey and the predator only spread to the
upstream since the upstream invasion speed is positive (c̃∗ > 0) but the downstream invasion speed is
negative (c̃∗− < 0).

(c) In the drift-feeding case as mentioned in [3], the predators are drift-feeders, who hold fixed positions
in the water current and feed on invertebrates that are drifting by, we have b2 = 0 and b1 > 0. Then
the upstream and downstream invasion speeds are c̃∗ = c̃∗− = 2


d2 (r2 + b22r1/b11) if (H1) holds. An

example of the relationship between c̃∗ and the growth rate r2 of the predator in this case is shown in
Fig. 2(c). Parameters are r1 = 0.1, b11 = 0.05, b22 = 0.01, d2 = 0.02, and b1 = 0.05. It shows that if the
predator is a generalist (i.e., r2 > 0) or a specialist with sufficiently small death rate (i.e., r2 < 0 but |r2|
is small), then the prey and the predator both spread to the upstream and the invasion of the predator
is still successful.

5.2. The prey’s spread speeds

The minimal wave speeds of the prey-spread traveling waves c̃∗23 and c̃∗23− depend on all parameters of
model (1) except diffusion rate (d2) and the advection speed of the predator (b2). Assumption (H1) is
the only condition for the establishment of these speeds. Note that model (1) admits such traveling waves
connecting a coexistence equilibrium to a predator-only equilibrium only when the predator is a generalist
(i.e., r2 > 0). The formulae of c̃∗23 and c̃∗23− coincide with our intuition in the sense that they increase, and
hence it is easier for the prey to spread, as the growth rate (r1) and the diffusion rate (d1) of the prey
increase or the growth rate (r2) of the predator decreases. Moreover, the higher the predation rate (b12)
the harder it is for the prey to survive and spread, but the higher the density-dependence rate (b21) of the
predator the easier it is for more prey to survive and spread as more predators die. The advection rate (b1)
of the prey, if positive, reduces the ability of the prey to spread to the upstream but helps the prey to spread
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Fig. 3. Stability classification of equilibria for the ODE system corresponding to (35). “AS”: “asymptotically stable”; “US”:
“unstable”; “×”: P3 does not exist.

to the downstream. However, the movement of the predator (in terms of d2 and b2) does not influence the
spread of the prey. This is because the prey is introduced into an environment where the predator originally
occupies and the risk of predation is almost the same for the prey everywhere.

6. Biological explanation of linear and nonlinear determinacy

By (14) and (16) we know that the minimal wave speed c = c∗ of (4) is determined when H(λ) admits
a repeated root, which, together with Theorem 2.1(i), implies that the minimal wave speed of model (4)
(or model (1)) is linearly determined. Linear determinacy has been previously studied for Lotka–Volterra
models but mainly without advection. Therefore, in this section, in order to compare our results with previous
results, we consider model (1) without advection

ut = d1uxx + u(r1 − b11u− b12v),
vt = d2vxx + v(r2 − b21v + b22u),

(35)

to analyze the biological background of linear determinacy for Lotka–Volterra models by comparing
Theorem 2.1(i) with the results in [36–38]. Note that we do not restrict b22 to be positive in this section,
which indicates that system (35) is a predator–prey model if b22 > 0 and it is a competitive model if b22 < 0.

Let P1 = (u1, 0), P2 = (0, v2), and P3 = (p∗, q∗) be equilibria of (1), corresponding to equilibria E1, E2
and E3 of (4), respectively. Let

a1 = −b22

b11

r1

r2
and a2 = b12

b21

r2

r1
.

We classify the meaningful parameter range of a1 and a2 into subsets: A1, A2, A3, and A4 := A41 ∪ A42
(see Fig. 3). The asymptotical stability of P1, P2 and P3 for the ordinary differential equation system
corresponding to (35) is given in Fig. 3 according to the range of parameters a1 and a2.

Denote the minimal wave speed of system (35) by c∗ if it exists. If (a1, a2) ∈ A1, both P1 and P2
are asymptotically stable, and hence, the traveling wave connecting P1 and P2 is a bistable wave [36]. If
(a1, a2) ∈ A2∪A3, it has been proved in Theorem 2.2 in [48] that, there exists a positive c∗ such that system
(35) has a traveling wave solution connecting P1 and P ∗ with wave speed c if and only if c ≥ c∗, where

P ∗ =

P3, if (a1, a2) ∈ A2 ∪A42;
P2, if (a1, a2) ∈ A1 ∪A3 ∪A41.

(36)
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It is easy to show that

c∗ ≥ c̄ := 2

d2r2(1− a1) = 2


d2


r2 + b22

b11
r1


.

If

c∗ = c̄,

the minimum wave speed c∗ is called to be linearly determined or to be of linear determinacy, and if

c∗ > c̄,

the minimum wave speed is called to be not linearly determined or to be of nonlinear determinacy
[36–38]. The linear determinacy of (35) in the case of (a1, a2) ∈ A2 ∪ A3 is confirmed under some
specific conditions [49–51,38,52,44,53]. However, Hosono [49] showed by numerical simulations that nonlinear
determinacy may occur. Furthermore, Huang and Han [37] proved the nonlinear determinacy under certain
limitation of parameters.

Remark 6.1. In the case of a1 < 0, system (35) is a predator–prey system, a special case of (1). It follows
from Remark 2.2 that the minimal wave speed of traveling wave solutions connecting P1 and P ∗ of (35)
with a1 < 0 is given by c∗ = c̄. Hence, the minimum wave speed c∗ of system (35) with a1 < 0 is linearly
determined or of linear determinacy.

We now restate the results in [36–38] as follows.

Lemma 6.1 ([36,37]). For any given constants a1 > 1, a2 > 1, there is a unique real number c(a1, a2) such
that (35) has a nonnegative traveling wave solution connecting P1 and P2 if and only if c = c(a1, a2).
Moreover, the following hold:

(a) c(a1, a2) is differentiable with respect to a1 and a2 with ∂c(a1,a2)
∂a1

< 0 and ∂c(a1,a2)
∂a2

> 0.
(b) If d1/d2 = r1/r2, then the bistable wave speed c(a2, a2) = 0 for all a2 > 1.

Lemma 6.2 ([38,37]).

(a) Let d1/d2 = r1/r2 and a2 > 1 be fixed. Let c∗(a1) = c∗ be the minimum wave speed of traveling wave
solutions connecting P1 and P2 of (35) for 0 < a1 < 1. Then there is a positive constant ε such that for
all a1 ∈ [1− ε, 1), c∗(a1) > c̄ = 2


d2r2(1− a1).

(b) The minimal wave speed of (35) is linearly determined if

0 < a1 < 1, d1/d2 ≤ 2, r1a1a2/r2 ≤ (2− d1/d2)(1− a1) + r1/r2. (37)

It has been shown that the asymptotical spreading speed for (35) is identical to the minimum wave speed
of traveling wave solutions connecting P1 and P ∗ (see (36)) provided that (a1, a2) ∈ A2 ∪ A3 [15,44]. Thus
the essence of linear determinacy is that the spreading speed is linearly determined and this fact will be
used in the following discussion. We have the following conclusions about how and why the spreading speed
or the minimal wave speed is determined by parameters a1 and a2.

1. From (37), it follows that condition a1a2 > 1 (i.e., −b12b22 > b11b21) is necessary for nonlinear
determinacy. This indicates that nonlinear determinacy can only occur if the interspecific competition
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Fig. 4. The relationship between the simulated spreading speed and parameters a1 and a2. “∗” denotes the simulated spreading
speed. Left: parameters: a1 = 0.4, d1/d2 = r1/r2 = 2. Right: parameters: a2 = 2, d1/d2 = r1/r2 = 2. The solid line in the right
figure denotes c̄ = 2


d2r2(1− a1).

is stronger than the intraspecific competition, i.e., if the principle of competitive exclusion works [54].
Since a1 > 1 and a2 > 1 imply −b22/r2 > b11/r1 and b12/r1 > b21/r2, we call A1 the strong-competition
parameter area and A2 the weak-competition parameter area. In addition A4 (implying a1a2 < 0 < 1) is
the non-competition parameter area since population u has positive effect on v.

2. If (a1, a2) ∈ A1 then Lemma 6.1 implies that there exists a unique wave speed c(a1, a2), which decreases
in a1 ∈ (1,+∞) and increases in a2 ∈ (1,+∞). See Fig. 4. Let χ := a2 − a1 for a2 ≥ a1. We then deduce
that c(a1, a2) is an increasing function in χ. As χ can serve as a measurement of the difference between
these two populations’ competitive capacity, this indicates that larger difference of competitive capacity
results in faster spreading speed (or invading speed). Thus, we may say that the spreading speed c(a1, a2)
is non-linearly determined if (a1, a2) belongs to strong-competition area A1.

3. According to Remark 6.1 and Lemma 6.2(b) the spreading speed is linearly determined if (a1, a2) belongs
to weak-competition area A2 or non-competition area A4. See the right figure of Fig. 4.

4. It follows from Lemma 6.2(a) that the spreading speed c∗ is non-linearly determined if (a1, a2) ∈ A3
but near the strong-competition parameter area A1, and c∗ is linearly determined if (a1, a2) ∈ A3 but
near A2 ∪ A4 (e.g. a1a2 < 1) (see Figure Fig. 5). Therefore, A3 is the transition parameter region from
nonlinear to linear determinacy.

Based on above discussions we find that the basic reason for nonlinear determinacy lies in the strong
interspecific competition. The minimal wave speed for predator–prey model (35) (a1 < 0, a2 > 0) is linearly
determined since there is no mutual interspecific competition. We can also explain the linear determinacy
for the predator–prey interaction in a more intuitive way. Assume that initially preys dominate the left part
of the habitat and predators are introduced from the right part of the habitat. Predators then invade preys
to the left and the density of preys decreases passively from u1 to 0 because of the predator’s invasion (see
Fig. 5). Therefore, we can say that the invasive speed of this system is controlled by predators. We set u = u1
in the predator’s equation (i.e. the second equation of (35)) since the density of preys on the predator’s wave
front can be approximated by its carrying capacity u1. The second equation of (35) with u = u1 is a Fisher
equation with the minimal wave speed c̄ = 2


d2r2(1− a1), which is equal to the minimal wave speed of

model (35). This implies that the linear determinacy holds.
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Fig. 5. The mechanics of linear determinacy of the minimal wave speed for predator–prey model (35) in the case of a1 < 0, a2 > 1
(i.e. P∗ = P2).

7. Discussion

In this paper, we obtain the sufficient and necessary conditions for the existence of the predator-invasion
and the prey-spread traveling waves of the reaction–diffusion–advection predator–prey system (1) and assert
linear determinacy of the minimal wave speed. We investigate the effect of parameters, especially the
growth rate of the predator and the advection rate (or flow rate) of the predator on the minimal wave
speed and hence on the spread of both species in an advective environment such as a river. It has been
shown that the mechanics of linear determinacy is the same for the competitive Lotka–Volterra model with
weak interspecific competition. We also show that the source of nonlinear determinacy lies in the strong
interspecific competition.

For many spatial population models, it has been proved that the minimal wave speed of traveling waves
coincides with the spreading speed, which is the asymptotic speed at which the population spreads in
the direction the traveling waves spread to (see e.g., [43,6,44]). However, this has not been proved for the
predator–prey models, with or without advection, due to the difficulty in theoretical analysis of nonmonotonic
systems. In [3], the minimal wave speed of traveling waves was used to approximate the invasion speed of the
species for predator–prey models in river environments. We adopt this idea in this paper and also use the
minimal wave speed of traveling waves to approximate the invasion speed. This is biologically reasonable.
The traveling wave solutions discussed in Theorem 2.1 connect the prey-only equilibrium to a predator-
present (coexistence) equilibrium. Thus, they represent the invasion of the predator in an environment with
the prey at its carrying capacity, and hence the wave speed in this work essentially represents the invasion
speed of the predator. Theorem 2.1 shows that such invasion is successful in the upstream or downstream
direction under certain conditions. If the predator is a specialist, then the invasion may result in coexistence
of the prey and the predator; if the predator is a generalist, then the invasion may result in a predator-only
situation where the predator coexists with its other food sources. The flow rate does negative effect on the
upstream invasion but positive effect on the downstream invasion. Note that the result in Theorem 2.1 may
be true when the two advection rates have different signs. A very special case where the predator is subjected
to the flow effect and has an advection rate to the downstream direction but the prey is not subjected to the
flow effect and has an advection rate to the upstream direction, may happen to some flies and their predators
in rivers. In this case, when the advection rate for the prey is small enough, our result in Theorem 2.1 is
still true. The traveling wave solutions discussed in Theorem 2.2 connect the predator-only equilibrium to
a coexistence equilibrium. These waves particularly show the spread process of the prey in an environment
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where the predator already exists. The results are straightforward in the sense that the preys can survive
and spread when the conditions are good for them to grow and dispersal but not good for the predators.

As a potential future problem, it would be mathematically challenging but interesting to show whether
the minimal wave speed of traveling waves coincides with the spreading speed for predator–prey models.

It is worthwhile to mention that the proofs of two main theorems are based on Schauder’s fixed-point
theorem, LaSalle’s invariance principle and Laplace transform. In the applications of these methods, some
improvements of theoretical methods are necessary such as the construction of upper–lower solutions,
Lemmas 3.7 and 3.9. Our methods are general enough to be applied to other models to establish the
traveling waves. For instance, Lemma 3.7 can also be applied to some models with time delay such as the
following SI disease-transmission model with time delay:

∂S(x, t)
∂t

= d1
∂2S(x, t)
∂x2 +B(1− S(x, t))− βS(x, t)I(x, t− τ),

∂I(x, t)
∂t

= d2
∂2I(x, t)
∂x2 + βS(x, t)I(x, t− τ)− γI(x, t),

(38)

where all parameters are positive and τ is the latency of the infection in a vector. If S(x, t) = S(ξ), I(x, t) =
I(ξ), ξ = x+ ct is a positive bounded traveling wave solution of (38), then it satisfies

cS′(ξ) = d1S
′′(ξ) +B(1− S(ξ))− βS(ξ)I(ξ − cτ),

cI ′(ξ) = d2I
′′(ξ) + βS(ξ)I(ξ − cτ)− γI(ξ),

which is equivalent to 
d1S

′′(ξ)− cS′(ξ) + p21(ξ)S(ξ) +B = 0,
d2I
′′(ξ)− cI ′(ξ)− γI(ξ) + p22(ξ) = 0,

where

p21(ξ) = −(B + βI(ξ − cτ)), p22(ξ) = βS(ξ)I(ξ − cτ) > 0.

Then applying Lemma 3.7 impliesS′(ξ)S(ξ)

 ≤M,

I ′(ξ)I(ξ)

 ≤M, ∀ξ ∈ R

for some positive constantM. Lemma 3.7 also can be applied to some models consisting of more than two
equations [55].
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