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Abstract. We present a novel multidimensional network model as a
means to analyze decoder failure and characterize trapping sets of graph-
based codes. We identify a special class of these decoding networks, which
we call transitive networks, and show how they may be used to identify
trapping sets and inducing sets. Many codes have transitive decoding
network representations. We conclude by investigating the decoding net-
works of codes arising from product, half-product, and protograph code
constructions.
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1 Introduction

Failure of message-passing decoders of low-density parity-check (LDPC) codes
has been shown to be characterized by graphical (sub)structures in the code’s
Tanner graph, such as pseudocodewords, absorbing sets, trapping sets, and stop-
ping sets (a subclass of trapping sets) [1–4]. In particular, these structures con-
tribute to persistent error floors in the Bit Error Rate (BER) curves of these
codes. The presence of such structures naturally depends on the choice of Tan-
ner graph representation used in decoding. However, while absorbing sets are
combinatorially-defined, trapping sets are heavily decoder dependent, making
them more difficult to analyze. Nevertheless, for many practical channels, the
error floor behavior is dominated by the harmful trapping sets in the graph [3].

In this work, we present a multidimensional network model for analyzing
hard-decision message-passing decoders. The structure of this network is de-
pendent on the code, as well as the choice of Tanner graph representation and
decoder. Thus, our model takes into account all parameters determining the pres-
ence of harmful trapping sets. We show how these decoding networks may be
used to identify trapping sets, and therefore analyze decoder behavior of LDPC
codes, as well as provide insight into the optimal number of iterations to be run
on a given code (and representation) with a chosen decoder. We show that this
analysis is simplified for networks with a transitivity property, and discuss the
connection between transitive networks and redundancy in their corresponding
parity-check matrices. Finally, we relate the decoding networks of product and



half-product codes to those of their underlying component codes, and examine
the connection between the decoding networks of a protograph and its lift.

While the results herein present the case of binary linear codes transmitted
over the binary erasure and symmetric channels (BEC and BSC), the defini-
tions and results may be extended for linear codes over larger fields. Moreover,
the decoding network concept and its applications may be extended to other
channels and decoding algorithms. This paper is organized as follows. In Section
2, we provide notation and background. We present multidimensional decod-
ing networks for decoder analysis in Section 3. In Section 4, we define trapping
sets and describe a method for identifying them using this model. In Section 5,
we discuss the connection between redundancy and transitivity, and apply the
decoding network framework to various codes.

2 Preliminaries

In this section we introduce relevant background. Let C be a binary LDPC code of
length n with associated Tanner graph G, to be decoded with some chosen hard-
or soft-decision decoder. Following the notation and definitions in [5], suppose
that the codeword x is transmitted, and x̂ is received. Let x̂` be the output after
` iterations of the decoder are run on G. A node x̂i, with 1 ≤ i ≤ n, is said to
be eventually correct if there exists L ∈ Z≥0 such that x̂`i = xi for all ` ≥ L.

Definition 1. Let T (x̂) denote the set of variable nodes that are not eventually
correct for a received word x̂, and let G[T ] denote the subgraph induced by T (x̂)
and its neighbors in the graph G. If G[T ] has a variable nodes and b odd-degree
check nodes, T (x̂) is said to be an (a, b)-trapping set. In this case, the set of
variable nodes in error in the received word x̂ is called an inducing set for T (x̂).
The critical number of a trapping set T , denoted m(T ), is the minimum number
of variable nodes in an inducing set of T .

Note that the critical number may arise from an inducing set not fully con-
tained in T . Moreover, observe that stopping sets [4] are simply trapping sets
over the BEC, all of whose inducing sets contain the stopping set itself. Since a
stopping set is an inducing set for itself, the critical number of a stopping set is
equal to its size.

Due to their complexity, trapping sets are typically analyzed under hard-
decision decoders, such as Gallager A/B [6, 7], although interesting work has
also been done on trapping set analysis for soft-decision decoders on the AWGN
channel [8, 9]. Simulation results suggest that trapping sets with respect to hard
decision decoders also affect the error floor performance of soft-decision decoders
[5, 10]. Recall that the Gallager A algorithm operates for transmission over the
BSC; messages are calculated at nodes and sent across edges of the associated
Tanner graph. Variable to check (µv→c) and check to variable (µc→v) messages
are calculated as follows:



µv→c(r,m1, . . . ,md(v)−1) =

{
r + 1 if m1 = · · · = md(v)−1 = r + 1

r else,
(1)

where r is the received value at variable node v, dv is the degree of v, and
m1, . . . ,md(v)−1 are the most recent messages received from the check nodes
which are not those to which the current message is being calculated. In the
other direction,

µc→v(m1, . . . ,md(c)−1) =

d(c)−1∑
i=1

mi , (2)

where here m1, . . . ,md(c)−1 are messages received from variable nodes. Note that
calculations are performed in F2. Gallager B relaxes the unanimity condition of
µv→c. Throughout the examples in this work which use Gallager decoding, we
consider Gallager A decoding with the final decoder output at a variable node v
given by the received value at v, unless incoming messages µc→v for c adjacent
to v unanimously disagree with this received value. Further results for Gallager
B and more relaxed decoding rules will be treated in a forthcoming work.

3 Multidimensional Network Framework

Suppose we decode a code C using a hard-decision decoder, and consider the
labeled directed graph (digraph) for a fixed ` ∈ Z>0, denoted D`, with vertex
and edge sets V = {x : x ∈ S} and E = {(xi,xj , `) : x`i = xj}, respectively,
where S is the set of possible received words, (xi,xj , `) denotes an edge from xi
to xj with edge label `, and x`i is the output of the decoder after ` iterations with
input xi. Note that we allow loops, which are edges of the form (xi,xi, `). For
simplicity, we refer to the label of a vertex – that is, its corresponding word in S –
interchangeably with the vertex itself. There will be a potentially distinct digraph
on this same vertex set for each choice of ` ∈ Z>0. We call the union of these
digraphs for all ` ∈ Z>0 the (multidimensional) decoding network corresponding
to the code C and the specific choice of decoder, as we may consider the digraph
which incorporates the information for all ` as a multidimensional network.

Definition 2. [11] A multidimensional network is an edge-labeled directed graph
D = (V,E,D), where V is a set of vertices, D a set of edge labels, called di-
mensions, and E is a set of triples (u, v, d) where u, v ∈ V and d ∈ D. We say
that an edge (or vertex) belongs to a given dimension d if it is labeled d (or is
incident to an edge labeled d).

In this framework, the decoding network is a multidimensional network with
D = Z>0, and each edge labeled with the number of decoder iterations, `, to
which it corresponds. Notice that, in any given dimension (i.e. iteration), every
vertex has outdegree equal to one. Next, we introduce an important type of
decoding network.



Definition 3. We say that a decoding network is transitive if (v1, v2, `) ∈ E if
and only if for every choice of 1 ≤ k ≤ ` − 1, there exists vk ∈ V such that
(v1, vk, k), (vk, v2, `− k) ∈ E. We say a decoder is transitive for a code C and a
choice of representation of C if its resulting decoding network is transitive.

Transitivity corresponds to the case in which running i iterations of the
decoder on a received word, and using that output as input to a subsequent
j decoding iterations, is equivalent to running i + j iterations on the original
received word.

Let D` denote the digraph corresponding to the `th dimension of the decoding
network D, and let A(D`) denote the adjacency matrix of the digraph D`. Ob-
serve that a decoding network D is transitive if and only if A(D`) = (A(D1))` for
all ` ≥ 1, as the product (A(D1))` gives directed paths of length ` in dimension
1 of D.

Example 1. Consider a simple binary parity-check code of length n, with parity-
check matrix given by the 1×n all-ones matrix. The Tanner graph representation
of such a code is a single check node with n variable node leaves. Thus, if code-
words are sent over the BSC and decoded with the Gallager A algorithm, the
message the solitary check node sends to each of its adjacent variable nodes is
either (a) the node’s channel value, if a codeword is received, or (b) the opposite
of its originally-received value, otherwise. Each variable node will always send
back its channel value. For any number of iterations, codewords will decode to
codewords, and any non-codeword x̂ will be decoded to x̂ + 1. If n is odd, every
received word will decode to a codeword, and the network will be transitive. If n
is even, x̂+1 will not be a codeword, and the network will not be transitive. The
cases n = 3 and n = 4 are shown in Figure 1; in both networks, edges belonging
to higher dimensions are suppressed, as all dimensions are identical.

Fig. 1. The decoding networks of parity-check codes of lengths 3 (left) and 4 (right).

Example 2. Consider the binary Hamming code of length 7 = 23−1, denoted H3.
Recall that this code’s canonical 3×7 parity-check matrix has columns consisting
of all nonzero binary words of length 3. The corresponding Tanner graph may
be seen in representation A of Figure 2. However, H3 may also be defined by
the parity-check matrix whose Tanner graph is representation B in Figure 2.
Under Gallager A decoding, representation A does not yield a transitive decoding
network. However, if representation B is decoded via Gallager A, the resulting



Fig. 2. Two distinct Tanner graph representations of H3, along with their parity-check
matrices. Variable nodes are denoted by •, and check nodes are denoted by 3.

decoding network is transitive: every word decodes under a single iteration to a
codeword, and decodes identically for any higher number of iterations.

If a decoder is transitive for all representations of all codes C, we say that
it is universally transitive. Any decoder which ignores channel values at each
subsequent iteration will be universally transitive; some examples are given next.

Example 3. If codewords from a code C are sent over the BEC, and words are
decoded using a peeling decoder which iteratively corrects erasures, then the
corresponding decoding network of C is universally transitive. Indeed, correc-
tions at each iteration are performed regardless of previous iterations. Similarly,
iterative bit-flipping decoders over the BSC are universally transitive.

4 Trapping Set Characterization

Within this multidimensional decoding network framework, trapping sets of a
code transmitted over the BSC may be determined by looking at the supports of
the words corresponding to vertices in the decoding network that have nonzero
indegree in an infinite number of dimensions. That is,

Theorem 1 For each vertex x ∈ V = Fn2 in a decoding network D = (V,E,D)
for a code C, let Mx be the set of vertices y ∈ V for which there is an edge
(x,y, `) ∈ E for infinitely many choices of `. Then the set of variable nodes
corresponding to ⋃

y∈Mx

supp(y) ,

denoted T (x), is a trapping set with an inducing set given by the variable nodes
corresponding to supp(x). Furthermore, the set of trapping sets of the code C is

{T (x) : x ∈ Fn2} ,

and, given a trapping set T , its set of inducing sets is given by the variable nodes
corresponding to

{supp(x) : T (x) = T } ,
and its critical number is

m(T ) = min{ |supp(x)| : T (x) = T } .



Proof. Assuming that the all-zero codeword was sent over the BSC, any decoding
errors will be given by 1’s. If, during the process of decoding the received word x,
there is some word y such that an edge from x to y occurs in an infinite number
of network dimensions, the support of y gives variable node positions which are
not eventually correct. By definition, these variable nodes belong to a trapping
set induced by the variable nodes of the support of x. However, these may not be
the only variable nodes that are not eventually correct given the received word
x. Taking the union of the supports of all such y gives us our expression for
T (x), the trapping set induced by x. Repeating this for each possible received
word, we find all trapping sets of the code. Note that each trapping set may be
induced by multiple received words.

Example 4. Let C be the binary repetition code of length 3, with the parity-check
matrix

H =

(
1 1 0
0 1 1

)
The associated Tanner graph is a path of length 4 with variable nodes v1, v2,

and v3. Let D be the (non-transitive) decoding network of C under Gallager
A, shown in Figure 3. Assuming 0 was transmitted, the received word 011, for
example, decodes in one iteration to the codeword 111, but decodes for any
number of iterations greater than 1 to the (non-code)word 110. Thus, {v1, v2} is
a (2,1)-trapping set. Note that the support of 011, which induces this trapping
set, is not contained in the trapping set. Similarly, {v1, v2, v3} is a trapping set
corresponding to the codeword 111, with inducing sets {v1, v3} and {v1, v2, v3}.
Other trapping sets of the code include {v2, v3} (induced by {v1, v2}), {v1}
(induced by {v3}), and {v3} (induced by {v1}).

Fig. 3. The decoding network of a binary repetition code of length 3.

In the case of transitive decoding networks, trapping sets may be identified
by looking only at dimension 1, as follows:

Corollary 1. If the decoding network, D, of a code C is transitive, then the
trapping sets are given by (1) the sets of variable nodes corresponding to supports
of vertices with loops in D1, and (2) the sets of variable nodes corresponding to
unions of the supports of vertices forming directed cycles in D1. Furthermore,
inducing sets of trapping sets in a transitive decoding network are given by the



variable nodes corresponding to the support of any vertex which has a directed
path to either a (nonzero) vertex with a loop, or to a directed cycle, regardless
of where that path enters the cycle.

Proof. In a transitive decoding network, the edges in dimension ` correspond
to directed paths of length ` in D1. Thus, in order for a word to appear as
the output of the decoder in an infinite number of dimensions, it must be the
terminating vertex of infinitely many directed paths (of distinct lengths) from
the received word. Because the decoding network for a code is finite, and the
outdegree of every vertex in D1 is equal to 1, this can only occur if there is a
loop at that vertex, or if it belongs to a directed cycle. The result follows from
Theorem 1.

In the adjacency matrix of dimension 1 of a decoding network, nonzero diag-
onal entries indicate loops. There are numerous algorithms for finding directed
cycles in a digraph, such as Depth-First Search (DFS) [12]. We further note
that several works have addressed the computational aspects of finding and/or
removing trapping sets [10, 13–15].

We conclude this section by discussing the ideal number of iterations given
a fixed code and decoder. Note that in Example 4, if the all-zero codeword
was sent, more received words are decoded correctly if only a single iteration of
the decoder is run, rather than multiple iterations. To this end, we introduce a
parameter we call the decoding diameter.

Definition 4. Let D = (V,E,D) be the decoding network of a code C under
a fixed decoder. For x ∈ V , let Lx be the minimum nonnegative integer such
that for all ` ≥ Lx, x`, the output of the decoder after ` iterations, appears an
infinite number of times in the sequence {xk}∞k=Lx

. Then, the decoding diameter
of D is given by ∆(D) = maxx∈V Lx.

After running ∆(D) iterations, all errors will be contained in trapping sets of
the code. In Example 2, H3 with canonical graph representation A decoded via
the Gallager A algorithm has decoding diameter 3, and H3 with representation
B has decoding diameter 1. The decoding diameter of a transitive decoding
network is the maximum distance in D1 of any vertex to either a vertex with
loop or to a directed cycle.

5 Representations Yielding Transitivity

Due to the effect of the choice of representation on a decoding network’s struc-
ture, it is natural to ask which representations, if any, ensure that a code’s de-
coding network is transitive under a fixed decoder. Recall from Example 2 that
the canonical representation of the Hamming code H3 does not yield a transitive
decoding network under Gallager A, while the decoding network arising from the
representation given by the parity-check matrix including all nonzero codewords
of the dual code is transitive. In fact,



Theorem 2 Every binary linear code has a parity-check matrix representation
whose corresponding decoding network is transitive under Gallager A decoding.

In particular, adding exactly the nonzero codewords of the dual to the parity-
check matrix of a code (a representation which we will refer to as the complete
representation) will result in a transitive decoding network under Gallager A
decoding: using symmetries of the complete representation, we may show that
after a single iteration of the decoder, the received word either decodes to a
codeword and continues decoding to that codeword for any number of iterations,
or it will decode to itself under any number of iterations. The full proof of this
result will appear in the full version of this paper.

While the complete representation establishes the existence of a represen-
tation yielding a transitive network for any code, this level of redundancy is
not necessarily required, and in fact may create an excess of trapping sets in
the code. In Example 2, adding row seven of representation B to the canonical
representation A gives a transitive network, as does adding any three additional
rows to the canonical representation. However, any other combination of row ad-
ditions does not yield a transitive network. Thus, it is interesting to determine
the minimum level of redundancy needed to yield a transitive decoding network
for a code with a fixed choice of decoder.

In the remainder of this section, we apply the decoding network model to
product and half-product codes, which have been subject to renewed interest [16–
18], as well as to codes constructed from protographs. By phrasing the decoding
networks of these classes of codes in terms of the decoding networks of their
component codes, we can identify trapping sets in the larger codes with fewer
up-front computations. Proofs have been omitted for space.

Definition 5. Let C1 and C2 be binary linear codes of lengths n and m, respec-
tively. Then the product code C1×C2 is the set of m×n binary arrays such that
each row forms a codeword in C1, and each column forms a codeword in C2.

Consider a product code, C1×C2, with a decoder that operates by iteratively
decoding one component code at a time. At each iteration, channel information is
dispensed with and decoding is performed based solely on the current estimate.

Theorem 3 Let C1 and C2 be codes of lengths n and m, respectively, with decod-
ing networks D1 and D2. Let A1 be the adjacency matrix of the directed graph
product (D1

1)m, and let A2 be the adjacency matrix of (D2
1)n. Then, the adjacency

matrix of dimension ` of the transitive decoding network, D, of the product code
C1 × C2 is given by (A1A2)`.

Definition 6. [17] Let C be a binary linear code of length n, and let C̃H =
{X −XT : X ∈ C × C}. The half-product code with component code C, denoted
CH , is obtained from C̃H by setting the symbols below the diagonal of each
element of C̃H equal to zero.

A decoder runs by iteratively decoding at each of the n constraints corre-
sponding to “folded” codewords, as in [17, 18]. Again, channel information is dis-
pensed with at each subsequent iteration. Let Ai be the adjacency matrix of the



digraph on the vertex set of the decoding network of the half-product code, DH ,
which gives the behavior of a single decoder iteration run on the ith constraint
code. While decoding is performed on the ith constraint, all (n − 1)(n − 2)/2
symbols not participating in constraint i are fixed. Let Di be the decoding net-
work associated with the ith constraint code. Then, Ai is the adjacency matrix
of a disjoint union of 2(n−1)(n−2)/2 copies of Di, corresponding to all the ways
non-participating symbols may be fixed. Permute the rows and columns of the
Ai’s so that they all correspond to a single ordering of the vertices in DH , and
let Sn denote the symmetric group on n elements.

Theorem 4 The product (Aσ(1) · · ·Aσ(n))`, where σ ∈ Sn, gives the adjacency
matrix of DH` , dimension ` of the decoding network of the half-product code CH ,
where the component constraints are decoded in the order determined by σ.

Theorem 5 Let C be a binary linear code with Tanner graph G and decoding
network D with respect to a fixed decoder. Viewing G as a protograph, let Ĉ be
the code corresponding to a degree h lift of G, denoted Ĝ, and (with an abuse of
notation), let D̂ be the decoding network of Ĉ with respect to the same decoder.
Then, there exists a subgraph of D̂ that is isomorphic to D. In particular, if D
is not transitive, then D̂ is not transitive. However, transitivity of D does not
necessarily imply transitivity of D̂.

6 Conclusions

We presented a multidimensional network framework for the analysis of trapping
sets under hard-decision message-passing decoders. We showed that when the
decoding network of a code is transitive, trapping sets and their inducing sets
can be found by examining the behavior of the decoder in a single iteration. We
further showed that all codes have a transitive decoding network representation
under Gallager A decoding.

This work leads to many interesting avenues for future pursuit: determining,
for certain classes of codes, the minimum number of parity-check matrix rows
needed to obtain a transitive decoding network, using the transitive networks
of these codes to improve existing results on their trapping and inducing sets,
characterizing which lifts of transitive decoding networks preserve transitivity,
developing an efficient method of finding trapping sets and predicting the decod-
ing diameter for non-transitive networks, and extending these results to Gallager
B and other decoding algorithms. As a first direction, an interesting open prob-
lem is to determine a graph theoretic condition (or equivalently, a condition on
the parity-check matrix) that guarantees transitivity.
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