Derivatives for Scalar Functions of Two or More Variables

CONCEPTS

Partial Derivative

Algebraic: The partial derivative f_{x} for a function $f(x, y, \ldots)$ is obtained by differentiating with respect to x while holding the other variables constant.

Geometric: f_{x} is the slope on a graph of f against x, with all of the other variables replaced by fixed numerical values. If $z=f(x, y)$, then f_{x} is the (upward) rate at which the surface $z=f$ slopes when looking in the $\overrightarrow{\mathbf{i}}$ direction from the point (x, y).

Gradient

Algebraic: The gradient of a function is the vector of partial derivatives:

$$
\vec{\nabla} f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

It is convenient to think of $\vec{\nabla}$ as a vector of derivative operators:

$$
\vec{\nabla}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle
$$

This idea will allow us to use $\vec{\nabla}$ in dot and cross products to define other derivatives.
Geometric: The vector $\vec{\nabla} f(x, y, z)$ is orthogonal to the level surface of f at (x, y, z).

Directional Derivative

Algebraic: The directional derivative of a function f in the $\overrightarrow{\mathbf{u}}$ direction (where $\overrightarrow{\mathbf{u}}$ is a unit vector) is

$$
\left(\frac{d f}{d s}\right)_{\overrightarrow{\mathbf{u}}}=f_{\overrightarrow{\mathbf{u}}}=\overrightarrow{\mathbf{u}} \cdot \vec{\nabla} f
$$

Geometric: The directional derivative of a function $f(x, y)$ in the direction $\overrightarrow{\mathbf{u}}$ is the slope of the surface $z=f(x, y)$ for an observer looking in the $\overrightarrow{\mathbf{u}}$ direction. In particular,

$$
\left(\frac{d f}{d s}\right)_{\overrightarrow{\mathbf{i}}}=f_{\overrightarrow{\mathbf{i}}} \equiv \frac{\partial f}{\partial x}, \quad\left(\frac{d f}{d s}\right)_{\overrightarrow{\mathbf{j}}}=f_{\overrightarrow{\mathbf{j}}} \equiv \frac{\partial f}{\partial y} .
$$

The largest directional derivative magnitude is achieved in the $\vec{\nabla} f /\|\vec{\nabla} f\|$ direction, with magnitude $\|\vec{\nabla} f\|$.

APPLICATIONS

The derivative indicates local behavior-what you see if you zoom in on the graph of a function. This idea has both geometric and algebraic applications.

Linear Approximation

Small changes in a function value near a given point can be approximated by replacing the graph of the function with that of its tangent plane. If

$$
\begin{equation*}
\Delta f(x, y)=f(x, y)-f\left(x_{0}, y_{0}\right) \tag{1}
\end{equation*}
$$

is the change in value of a function f from a given point $\left(x_{0}, y_{0}\right)$ to a nearby point (x, y) and

$$
\begin{equation*}
\langle\Delta x, \Delta y\rangle=\left\langle x-x_{0}, y-y_{0}\right\rangle \tag{2}
\end{equation*}
$$

is the vector that indicates the displacement from the given point to the point (x, y), then

$$
\begin{equation*}
\Delta f(x, y) \approx \vec{\nabla} f\left(x_{0}, y_{0}\right) \cdot\langle\Delta x, \Delta y\rangle \tag{3}
\end{equation*}
$$

This formula can be generalized to functions of more than two variables.

Tangent Planes

The plane through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and normal to the vector $\overrightarrow{\mathbf{v}}$ is given by the equation

$$
\begin{equation*}
\overrightarrow{\mathbf{v}} \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \tag{4}
\end{equation*}
$$

Suppose $F\left(x_{0}, y_{0}, z_{0}\right)=c$. Then the point $\left(x_{0}, y_{0}, z_{0}\right)$ is on the level surface $F(x, y, z)=c$. The vector $\vec{\nabla} F\left(x_{0}, y_{0}, z_{0}\right)$ is normal to that level surface; hence, the plane tangent to the level surface at the given point has the equation

$$
\begin{equation*}
\vec{\nabla} F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \tag{5}
\end{equation*}
$$

