Notes on Path Integrals

Path integrals are integrals of scalar functions defined on a curve in two or three dimensions. The standard integral in a single variable x is a special case, where the curve is a portion of the x axis. Other curves can lead to much more complicated integrals.

Path Integral Concept

Let $d s$ represent the length of a little bit of a curve C at any point. If we have the linear density $f(x, y, z)$ of some kind of stuff Q (in units of stuff per unit length), then the total amount of stuff on the curve is

$$
\begin{equation*}
Q=\int_{C} f(x, y, z) d s \tag{1}
\end{equation*}
$$

Evaluating Scalar Path Integrals

There is just one method for evaluating path integrals of scalar functions. The curve, integrand, and differential must all be expressed in terms of a parameter t that marks the position of points on the curve. The direction of the curve does not matter.

The challenge in finding a formula for scalar path integrals is knowing how to write $d s$ in terms of the parameter used to identify the curve. Suppose we have a curve that is given by a position vector $\tilde{\mathbf{r}}(t)=\langle x(t), y(t), z(t)\rangle$ on an interval $a \leq t \leq b$. We can find the length of the curve by thinking of $\tilde{\mathbf{r}}(t)$ as representing motion. The velocity vector is the time derivative $d \tilde{\mathbf{r}} / d t$ and the speed is the magnitude of this vector. The distance traveled in a small bit of time $d t$ is then given by the product of velocity with time, leading to the integral

$$
\begin{equation*}
L=\int_{a}^{b}\left\|\frac{d \tilde{\mathbf{r}}}{d t}\right\| d t . \tag{2}
\end{equation*}
$$

But we can also identify the length from (1) by taking $f=1$ because the integral of 1 is always the size of the region. Comparing (1) and (2) yields a formula for the differential:

$$
\begin{equation*}
d s=\left\|\frac{d \tilde{\mathbf{r}}}{d t}\right\| d t=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \tag{3}
\end{equation*}
$$

Most path integrals of scalar functions result in integrals that cannot be computed by hand. One useful special case is when the curve is a portion of any circle of radius a.

- If a circle of radius a in some plane is parameterized by an angle θ, measured from any reference radius in either direction, then the differential is simply $d s=a d \theta$.

Example

Suppose we want to calculate the average value of y on the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$. We can identify the parameter t as the x coordinate, giving us the parameterization

$$
x=t, \quad y=t^{2}, \quad 0 \leq t \leq 1
$$

Then

$$
d s=\sqrt{1+(2 t)^{2}} d t=\sqrt{1+4 t^{2}} d t
$$

So the average of y is

$$
\bar{y}=\frac{\int_{0}^{1} t^{2} \sqrt{1+4 t^{2}} d t}{\int_{0}^{1} \sqrt{1+4 t^{2}} d t} .
$$

These integrals can be calculated using a trigonometric substitution, but the resulting integrals are still difficult. Using Wolfram Alpha, we obtain $\bar{y}=.60634 / 1.4789=0.4100$. Similarly, the average of x is

$$
\bar{x}=\frac{\int_{0}^{1} t \sqrt{1+4 t^{2}} d t}{\int_{0}^{1} \sqrt{1+4 t^{2}} d t} \approx 0.5736 .
$$

