
Introduction to Asymptotics

1. A Model Problem

The following problem is a simplified version of a problem that arose in a research project I did in
2016. We’ll eventually do the modeling that led to this problem.

Problem 1 Given parameters 0 < P < 1 and µ > 1, find x0 > 0 such that

x′ = −µx+ 2µy − 2Pµe−t, x(0) = x0, x(1/2) = x0; (1)

y′ = x− y, y(0) = 1, y(1/2) = 1. (2)

Our primary interest in Problem 1 is not in finding the value of x0, but rather in identifying
conditions that must be satisfied for the existence of a solution. The system of differential equa-
tions has a 2-parameter family of solutions, and x0 is an additional unknown; however, there are
four auxiliary conditions. This suggests that a solution is only possible if P and µ satisfy some
relationship to be determined. Thus, the actual problem of interest is

Problem 2 Given parameter µ > 1, find any P values for which Problem 1 has a solution.

2. Exact Solution

With µ given, the differential equations will have a 3-parameter family of solution, with P and two
integration constants as the parameters. These parameters will have to satisfy a system of three
algebraic equations:

x(1/2) = x(0), y(1/2) = y(0), y(0) = 1. (3)

The differential equations can be written in vector form as

u′ = Au+ f, (4)

where

A =

(
−µ 2µ

1 −1

)
, f =

(
−2Pµe−t

0

)
(5)

You can find nonhomogeneous linear systems such as this in most differential equations books. The
main idea is that the problem can be broken into smaller parts:

1. Find one solution up of the system.

(a) For this case, there will be a solution up(t) = vpe
−t, where vp is a constant vector.

2. Find the 2-parameter family of solutions uc of the simpler system u′ = Au.

(a) First find two specific solutions of the form uj(t) = vje
λjt.

i. The eigenvalues λj are the solutions of the equation det(A− λI) = 0.

ii. The eigenvector v for any particular λ is any solution of the matrix equation
(A− λI)v = 0.

(b) Then uc(t) = c1u1(t) + c2u2(t) (given that the system has two components).

3. The general solution is u(t) = uc(t) + up(t).
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Following this procedure yields the eigenvalues

λ1 =
−(µ+ 1) +

√
µ2 + 6µ+ 1

2
, λ2 =

−(µ+ 1)−
√
µ2 + 6µ+ 1

2
, (6)

corresponding eigenvectors

v1 =

(
λ1 + 1

1

)
, v2 =

(
λ2 + 1

1

)
, (7)

and solutions
x(t) = c1(λ1 + 1)eλ1t + c2(λ2 + 1)eλ2t, (8)

y(t) = c1e
λ1t + c2e

λ2t + Pe−t, (9)

Substituting these solutions into (3) yields the algebraic system(
1− e

λ1
2

)
(λ1 + 1)c1 +

(
1− e

λ2
2

)
(λ2 + 1)c2 = 0, (10)

(
1− e

λ1
2

)
c1 +

(
1− e

λ2
2

)
c2 +

(
1− e−

1
2

)
P = 0, (11)

c1 + c2 + P = 1. (12)

This system can be solved using a computer algebra system or by hand, with the solution

P =

(
1− e

λ1
2

)(
1− e

λ2
2

)
(λ1 − λ2)(

1− e
λ1
2

)(
e−

1
2 − e

λ2
2

)
(λ1 − λ2) +

(
1− e−

1
2

)(
e
λ1
2 − e

λ2
2

)
(λ2 + 1)

. (13)

3. Asymptotic Analysis of the Solution (13)

So far, we have done a lot of messy differential equation solving and algebra, and we’ve got an
answer that doesn’t look particularly interesting. What is interesting is that the value of P actually
changes very little with µ: on the interval 1 < µ < 40, we have P decreasing from 0.635 to 0.626.
Our messy function of µ is only slightly different from a constant. Given that, we ought to be
able to approximate P as a constant plus a simple small-amplitude function of µ. In this section,
we’ll obtain such an approximation by applying asymptotic expansion to the solution (13). Later,
we’ll get the same answer by applying a regular perturbation method to the algebraic system (3).
We’ll improve that method by applying a regular perturbation method to the eigenvalue equation
rather than using the asymptotic expansion of the exact solution for the eigenvalues. We can also
apply a regular perturbation method directly to Problem 1; however, the method will not work
in that case, as Problem 1 is actually a singular perturbation problem. The goals of this analysis
are to provide illustrations of asymptotic expansion and regular perturbation, showing how they
are applied at different stages of a problem, and to see what happens in an example where regular
perturbation does not work.
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A Taylor Series Result Using a Perturbation Method

We need a computational formula,

√
1 + ε = 1 +

ε

2
− ε2

8
+O(ε3), ε→ 0. (14)

This formula is simply the first three terms of the Taylor series for the function f(ε) =
√

1 + ε
with series center at 0. We could get it by applying the Taylor coefficient formula, with the results
following after we have computed f ′(0) and f ′′(0). This is a lot of unnecessary work. Instead, we
look for a power series solution with undetermined coefficients:

√
1 + ε = 1 + aε+ bε2 +O(ε3), ε→ 0.

All we need to do to find a and b is square both sides, being careful to collect terms with like powers
of ε:

1 + ε = (1 + aε+ bε2)(1 + aε+ bε2) +O(ε3)

= 1 + 2aε+ (a2 + 2b)ε2 +O(ε3).

The results a = 1/2 and b = −1/8 follow from the requirement that the two functions in the
equation must be the same polynomial in ε.

Our derivation of (14) is an example of a perturbation method: We pre-identify the structure of
a solution as a series in terms of powers of a small parameter and then reduce the original problem
to a sequence of problems that determine each successive term in the series. Regular perturbation
methods are most commonly used for linear differential equations with nonconstant coefficients, but
they can be used for a variety of problems from algebra to partial differential equations. We’ll see
that not all perturbation problems are regular, but for now think of the method as being general.

Leading Order Approximation as µ→∞

If we want to get an approximation for large µ, the asymptotic approach is to think of µ → ∞.
This gives us √

µ2 + 6µ+ 1 = µ+O(1),

which results in the approximations

λ1 = O(1), λ2 = −µ+O(1).

Note that the cancelation of the µ terms in λ1 does not tell us that the approximation is 0; it tells
us that we need the O(1) terms to get an actual leading order approximation. From

√
µ2 + 6µ+ 1 = µ

√
1 +

6

µ
+O

(
1

µ2

)
,

we can use (14) with ε = 6/µ to obtain

λ1 = 1 +O

(
1

µ

)
,

which will suffice. Thus,

e
λ1
2 =

√
e+O

(
1

µ

)
, λ1 − λ2 = µ+O(1),
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and so on. The quantity e
λ2
2 ≈ e−µ is a special case. Where 1/µ is algebraically small, e−µ is

exponentially small, as if it were 1/µ∞. This means that it never counts when added to a term
that is only algebraically small, and we can ignore it altogether. Substituting these leading order
approximations into the solution (13) yields

P ∼ (1−
√
e)µ

(1−
√
e)
(
e−

1
2

)
µ+

(
1− e−

1
2

)
(
√
e) (−µ)

=
1−
√
e

(1−
√
e)
(
e−

1
2

)
+ (1−

√
e)

=

√
e√

e+ 1
,

where the notation “∼” (read “is asymptotic to”) must be used rather than an equal sign because
we omitted the big oh terms. (It is better to use ∼ even when including big oh terms. We’ll have
a mathematicial definition of this notation later.)

Two-Term Approximation as µ→∞

We can get a higher order approximation from (13) using the same procedure we used to get the
leading order term. We just have to be careful to keep track of which terms count and which are
absorbed into big oh terms. For example,

√
µ2 + 6µ+ 1 ∼ µ

√
1 +

(
6

µ
+

1

µ2

)
∼ µ

[
1 +

1

2

(
6

µ
+

1

µ2

)
− 1

8

(
6

µ
+

1

µ2

)2

+O

(
1

µ3

)]

∼ µ
[
1 +

(
3

µ
+

1

2µ2

)
−
(

36

8µ2

)
+O

(
1

µ3

)]
∼ µ+ 3− 4

µ
+O

(
1

µ2

)
.

From this result, we have

λ1 ∼ 1− 2

µ
+O

(
1

µ2

)
, λ2 ∼ −µ− 2 +O

(
1

µ

)
. (15)

Tracking everything through very carefully, we eventually get a final result

P ∼
√
e√

e+ 1

(
1 +

2e− 3
√
e

e− 1
· 1

µ

)
+O

(
1

µ2

)
. (16)

4. Perturbation Solution from the Linear System (3)

The first principle of asymptotics is

• Methods that make use of the known structure of a problem are almost always better than
methods that don’t.

In the derivation of the solution for P in (13), we failed to make use of the insight that the solution
for P should have an asymptotic expansion in powers of 1/µ. Instead, we could go back to the
problem from which we obtained (13)—the system of linear algebraic equations (3) with solutions
given by a slightly modified version of (7)–(9).

We start with the asymptotic expansions (15) for the eigenvalues. These lead to eigenvectors

v1 =

(
2− 2

µ +O
(

1
µ2

)
1

)
, v2 =

(
−µ− 1 +O

(
1
µ

)
1

)
.

Using the eigenvectors in this form violates the second principle of asymptotics, which is
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• Always work with small rather than large.

Eigenvectors can be rescaled by multiplying by constants, and we should rescale v2 to eliminate
the large term in the first component:

v1 =

(
2− 2

µ +O
(

1
µ2

)
1

)
, v2 =

(
−1− 1

µ +O
(

1
µ2

)
1
µ

)
. (17)

With these eigenvectors, the solution formulas for the differential equations are

x(t) ∼ c1
(

2− 2

µ

)
eλ1t + c2

(
−1− 1

µ

)
eλ2t +O

(
1

µ2

)
, (18)

y(t) = c1e
λ1t +

1

µ
c2e

λ2t + Pe−t, (19)

The seemingly minor difference in how we write v2 is actually critical, because it shows us that the
y component of v2 is small, and that in turn means that the c2 term in the solution for y is small.1

To leading order, the two algebraic conditions on y will be enough to determine c1 and P . We will
only need the condition on x to get the leading order result for c2.

Leading Order Approximation as µ→∞

Using asymptotic expansion, we can calculate

y

(
1

2

)
∼ e

λ1
2 c1 + e−

1
2P ∼

(
√
e−
√
e

µ

)
c1 +

1√
e
P. (20)

To leading order, the periodicity and initial conditions on y are

(
√
e− 1)c1 +

(
1√
e
− 1

)
P = 0,

c1 + P = 1.

This system is easily solved by hand, with the results

c1 ∼
1√
e+ 1

, P ∼
√
e√

e+ 1
. (21)

We care only about P , so we do not need to consider the periodicity condition on x at all.
Compare the amount of work needed for this perturbation solution with that needed for the

calculation of the exact solution and subsequent expansion. This is a good illustration of the first
principle of asymptotics.

1Using the original choice of v2, the smallness of the second term in (19) is incorporated into c2 rather than begin
explicitly clear. We would not know that c2 is small until after solving the 3-component system.
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Two-Term Approximation as µ→∞

With the addition of the O(1/µ) terms, the two conditions on y yield the equations(
√
e− 1−

√
e

µ

)
c1 −

1

µ
c2 +

(
1√
e
− 1

)
P = O

(
1

µ2

)
, (22)

c1 +
1

µ
c2 + P = 1. (23)

Clearly we can simplify this system by replacing (22) by the sum of the two equations (also multi-
plying by

√
e for convenience): (

e− e

µ

)
c1 + P =

√
e+O

(
1

µ2

)
, (24)

To leading order, we have the system

c1 + P = 1, ec1 + P =
√
e,

with solution (21). For higher order terms, we begin by writing the known structure of the asymp-
totic approximation as

P ∼
√
e√

e+ 1

(
1 +

P1

µ

)
+O

(
1

µ2

)
, c1 ∼

1√
e+ 1

(
1 +

c11
µ

)
+O

(
1

µ2

)
, c2 ∼ c20+O

(
1

µ

)
. (25)

We did not need the O(1) solution for c2 to get the O(1) solution for P , so we also won’t need the
O(1/µ) term for c2 to get the corresponding term for P .

Substituting the structure (25) into the equations (23)–(24), we obtain

1√
e+ 1

(
1 +

c11
µ

)
+
c20
µ

+

√
e√

e+ 1

(
1 +

P1

µ

)
= 1 +O

(
1

µ2

)
,

(
1− 1

µ

)
e√
e+ 1

(
1 +

c11
µ

)
+

√
e√

e+ 1

(
1 +

P1

µ

)
=
√
e+O

(
1

µ2

)
.

Of course the leading order terms cancel, so we can collect the O(1/µ) terms to get (multiplying
by
√
e+ 1 and simplifying)

c11 + (
√
e+ 1) c20 +

√
e P1 = 0, (26)

√
e c11 + P1 =

√
e. (27)

To complete the system, we need to get c20, which comes from the leading order periodicity condition
for x. From (3) and (18), this quickly reduces to

c2 ∼ 2c1

(
1− e

λ1
2

)
∼ −2

√
e− 1√
e+ 1

= c20. (28)

Substituting this result into (26) and then solving (26)–(27) yields the final result (16), but with
far less calculation than was required in finding the exact solution and then applying asymptotic
expansion.
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5. Perturbation Analysis of the Eigenvalue Problem

We can improve on the method of Section 4. Notice that we began the method with two-term
approximations (15) of the eigenvalues (6). We got those results by doing an asymptotic expansion
of the exact solution of the eigenvalue equation. Would it be easier to get them by doing a regular
perturbation solution of the eigenvalue equation? Yes!

The eigenvalues were found from the polynomial equation det(A− λI) = 0, which is

λ2 + (µ+ 1)λ− µ = 0. (29)

The second and third terms have factors of µ, so it seems reasonable to assume that those terms
are the largest ones. We can rearrange the equation as

µλ− µ = −λ2 − λ, (30)

with the expectation that the quantity on the right is less than O(µ) For this to work, we must
have λ ∼ 1; otherwise the two sides will have different orders. From this, it seems reasonable to
expect

λ1 ∼ 1 +
α

µ
.

Substituting this into the rearranged equation, and keeping only the most important terms on each
side, yields

α = −1− 1 = −2;

hence, we have found the two-term approximation for λ1 given in (15), but without having to solve
the quadratic exactly and then do an asymptotic expansion.

Clearly the equation must have a second solution, and it must not come from the case where
the second and third terms are the largest. Perhaps it should be the first and second terms. To
explore this, we rewrite the equation as

λ2 + µλ = µ− λ. (31)

With each term on the left larger than the terms on the right, we must conclude λ ∼ −µ. This
result needs to be checked against the assumptions. We would have λ2 and µλ be O(µ2), while
each term on the right is only O(µ). This is consistent, and it leads to the expectation

λ2 ∼ −µ+ β.

Before substituting into the rearranged equation (31), we should factor the equation as

λ(λ+ µ) = µ− λ.

Now it is easy to substitute in only the most important term for each factor:

(−µ)(β) = µ− (−µ),

which yields β = −2, reproducing the expansion we found in (15).
There can’t be more solutions for the quadratic, but there is an ordering assumption we haven’t

tried yet. Suppose we assume the first and third terms are the largest ones. We then write the
equation as

λ2 − µ = −(µ+ 1)λ. (32)

If the terms on the right are relatively small, then we get two solutions, λ ∼ ±√µ. However, this

result makes the right side O(µ3/2), which is larger than the two terms on the left, contradicting
the assumption. This particular guess for the largest terms is inconsistent.
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6. Perturbation Analysis of the Original Problem

It was better to work from the solutions of the differential equations rather than the exact solution.
Perhaps it would be better to work from the differential equations themselves. Normally this is
the case, but here we can identify a problem that can arise when solving a problem using a regular
perturbation method. The difficulty is immediately apparent from a leading order analysis of (1).
Since µ is large, the equation simplifies to

x ∼ 2y − 2Pe−t. (33)

But the auxiliary conditions require x and y to be periodic and e−t is not. The only escape is
to conclude P = 0, which we know is wrong. (Had this been our initial attempt at analysis, we
would have at this point concluded P = 0, which would have led to a contradiction in the other
conditions.)

It is instructive to attempt to do the analysis without noting the failure of periodicity. Substi-
tuting (33) into (2) yields

y′ − y ∼ −2Pe−t,

with solutions
y ∼ c1et + Pe−t, x ∼ 2c1e

t. (34)

The initial and terminal conditions on y are then

1 = c1 + P =
√
e c1 +

P√
e
.

Our leading order result (21) is actually the unique solution of this system. So the only condition
that cannot be satisfied by the regular perturbation method is the periodicity condition x(1/2) =
x(0). The failure of the regular perturbation solution to satisfy this condition means that none of
the results obtained in this calculation can be trusted. While some are actually correct, they were
derived from an incorrect assumption about the structure of the solution.

What we have seen here is what happens when you try to apply a regular perturbation method
to a singular perturbation problem. Everything goes just fine for a while, but eventually there is a
condition that cannot be satisfied and the whole chain of reasoning collapses. Much of the regular
perturbation solution will be used as part of a singular perturbation solution, but we’ll need to
learn how to do that.
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