
The Augmented Lagrangian Method for
Equality-Constrained Optimization

One of the most powerful general ideas for solving mathematics problems is to reduce a
complicated problem to a problem that you already know how to solve. If we can recast a
constrained optimization problem as an unconstrained problem, then we can use the BFGS
method that we already have. We will employ this strategy for equality-constrained prob-
lems. Problems with inequality constraints can be recast so that all inequalities are merely
bounds on variables, and then we will need to modify the method for equality-constrained
problems. For now, we consider only problems of minimizing f(x) subject to g(x) = 0,
where x ∈ Rn and g ∈ Rm with m < n.

One strategy for recasting a constrained problem as an unconstrained problem is to
construct the Lagrangian function L(x, λ) = f(x)−λTg(x). We can then use the first-order
necessary condition ∇(L(x∗, λ∗)) = 0. This works if the problem is known to have only local
minimizers. It does not work in general because the local minimizer of f is a saddle of L.

A second strategy is to augment the objective function with a quadratic penalty term:

Fρ(x) = f(x) +
1

2
ρ

m∑
i=1

g2i (x) = f(x) +
1

2
ρgT (x)g(x).

The idea here is that the minimizer of Fρ should converge to the desired solution as ρ →
∞. This method has been used successfully, but it is problematic. Sometimes there is no
minimizer if ρ is not large enough. More importantly, the function becomes ill-conditioned
as ρ → ∞, which poses a problem for the numerical solution. In practice, we should start
with a modest value of ρ and then use the result as a starting iterate for a larger value of ρ.

The idea of the augmented Lagrangian method is to combine the Lagrangian formulation
with a penalty function while considering only derivatives with respect to x. This means
that λ will be estimated and updated at each iteration. What makes the method work well
is that the convergence of λk eliminates the need for ρ→ ∞.

In developing the augmented Lagrangian method, we need to do the following:

1. Identify the correct updating formula for λk;

2. Show that the iteration scheme converges without requiring ρ→ ∞ when λ = λ∗;

3. Show that the iteration scheme converges without requiring ρ→ ∞ when λk is updated
using the formula of item 1.

Of these tasks, item 3 requires some technical analysis arguments and is not particularly
instructive. Item 2 is instructive, particularly because it is not at all obvious that the
minimizer of the unconstrained problem could be correct when the penalty parameter is
finite.



The General Augmented Lagrangian Scheme

The augmented Lagrangian function for an equality-constrained problem is

Fρ(x, λ) = f(x)− λTg(x) +
1

2
ρgT (x)g(x).

We fix λ) so that our unconstrained problem will have a local minimizer rather than a
saddle, so the function we optimize in iteration k will be

ϕk(x) = Fρk(x, λk) = f(x)− λk
Tg(x) +

1

2
ρk g

T (x)g(x). (1)

Each iteration will use the BFGS algorithm to identify the approximate minimizer of ϕk,
which will then become xk+1. We’ll choose some sequence ρk and we’ll need to update λk.
In the BFGS scheme, we’ll use the final iterate xk−1 and Broyden matrix Bk−1 from the
previous iteration as the initial choices for xk and Bk, with the identity matrix for the initial
iteration.

From (1), we have the first-order necessary condition

0 = ∇ϕ(k)(xk+1) = ∇f(xk+1)− (∇g(xk+1))λk + ρk(∇g(xk+1))g(xk+1);

thus,
∇f(xk+1) = ∇g(xk+1)[λk − ρk g(xk+1)]. (2)

We would like xk+1 to satisfy the Lagrange multiplier rule, which requires

∇f(xk+1) = ∇g(xk+1)λk+1. (3)

Comparison of (2) and (3) indicates the correct update formula for λk:

λk+1 = λk − ρk g(xk+1). (4)

We will use this formula after we have determined xk+1.

An Example

Consider the problem of minimizing f(x1, x2) = x1+x2 subject to the constraint g(x1, x2) =
x21 + x22 − 2 = 0. This problem is easily solved by hand, with the result x∗

T = (1 1) and
λ∗ = −1/2. When we apply the augmented Lagrangian formulation, the first order necessary
condition yields the equations

1 = 2λkx1 − 2ρkx1(x
2
1 + x22 − 2), 1 = 2λkx2 − 2ρkx2(x

2
1 + x22 − 2).

Multiplying the first by x2 and the second by x1 and subtracting yields the result x2 = x1,
from which we obtain the equation

1 = 2λkx1 − 4ρkx1(x
2
1 − 1).



We cannot solve this equation exactly, but we can obtain an asymptotic approximation in
the limit ρ → ∞. This is a messy calculation, and the details are not crucial. What really
matters is the value of the constraint function as the next iterate, which is

g(xk+1) ≈
λk +

1
2

ρk
.

This means that we have two ways to work toward achieving the desired result of g(xk+1) = 0:
by increasing ρk and by getting λk to converge to the correct value -1/2. More asymptotic
work eventually yields the result

λk+1 +
1

2
≈
λk +

1
2

8ρk
.

This is an excellent result. As we increase ρ, we get better approximations for λ. Both of these
changes move the iterates toward feasibility. In contrast, the penalty method corresponds
to taking λk = 0 for all k. In this case, the numerator of the approximation for g makes no
contribution to the convergence.

This example helps show why the augmented Lagrangian method can be expected to
converge without making ρ as large as is necessary for the penalty function method. The
actual result is much better than this. Not only does the solution converge faster with
λk → λ∗ and ρ→ ∞, but ρ→ ∞ is not even necessary. Notice in the example that keeping
ρk fixed still means that λk +1/2 → 0, which is enough to satisfy the constraint equation as
k → ∞. We’ll need to prove that this is always the case; otherwise we can’t have confidence
in the method.

Convergence of the Solution if λk = λ∗

We will now prove the following theorem:

Theorem 1 Suppose x∗ is a local minimizer for f(x) subject to g(x) = 0, where x ∈ Rn

and g ∈ Rm with m < n. Then x∗ is a local minimizer for

ψρ(x) = Fρ(x, λ∗) = f(x)− λ∗
Tg(x) +

1

2
ρgT (x)g(x)

for ρ sufficiently large.

To prove the theorem, we need to show that x∗ satisfies the first-order necessary condition
and the second-order sufficient condition. The first-order condition is easy. We can rewrite
ψρ in terms of the Lagrangian as

ψρ(x) = Fρ(x, λ∗) = L(x, λ∗) +
1

2
ρgT (x)g(x). (5)

Thus,
∇ψρ(x) = ∇xL(x, λ∗) + ρ (∇g(x))g(x). (6)

The first term of ∇ψρ(x∗) vanishes because x∗ is a local minimizer of the original problem,
and the second term vanishes because x∗ satisfies the constraints.



The second-order condition is much more difficult. It takes a fair bit of work to obtain
the identity

Hψ(x∗) = H(x∗) + ρ JT (x∗)J(x∗), (7)

where H is the Hessian of L and J is the Jacobian of 1
2
gTg.


