
Steady Flow Across a Flat Plate

Basic Fluid Mechanics

The basic idea of fluid mechanics is to model a fluid as a continuous medium and write
equations to keep track of important properties. If there is no energy exchange, the unknowns
are the velocity vector u, the density ρ, and the pressure p. These are related by the
continuity equation, representing conservation of mass, the momentum equation for the
velocity vector, and an equation of state.

Equation of State

Thermodynamics is concerned with the relationships of state variables in a fluid, including
density, pressure, temperature, entropy, enthalpy, and free energy. Any two of these can be
considered as independent, and then the rest are determined by thermodynamic laws such as
the ideal gas law. In our limited setting, the temperature is taken to be fixed, so we can think
of density as the second independent variable. This means that there is a thermodynamic
equation of state that can be written generically as

p = F (ρ).

The derivation of the acoustics equations from the basic conservation laws of fluid mechanics
ultimately connects the speed of sound in the medium to the function F :

c =
√
F ′(ρ).

We all know that air can be compressed, but this can only be done by confining it to a
space of fixed volume. If you try to compress air by pushing on it, the air will simply move
out of the way. We’ll see that the extent to which a fluid can be compressed by movement
at a speed significantly less than the speed of sound is very small. For now, we assume

ρ ∼ ρ0(1 + εS), (1)

where ρ0 is the standard density and ε is some small parameter to be determined through
scaling. We can then obtain an asymptotic expansion for the pressure:

p ∼ F (ρ0 + ερ0S) ∼ F (ρ0) + ερ0SF
′(ρ0) = p0 + εc2ρ0S. (2)

Continuity

The continuity equation is a standard conservation law for mass. Since ρ is the density of
mass and ρu is the mass flux per unit area, we have

∂ρ

∂t
+∇ · (ρu) = 0. (3)

For near-incompressible flow, we may take ρ ∼ ρ0 to leading order, which reduces the
continuity equation in two dimensions to

∂u

∂x
+
∂v

∂y
= 0. (4)
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Momentum

The momentum equation is a continuous analog of Newton’s second law of motion mv′ = F .
We can think of it as a conservation law with a known quantity of momentum being created
by the external force of pressure and the internal force of viscosity-induced stress.1 In vector
notation, this is

ρ
∂u

∂t
+ ρ(u · ∇)u +∇p = νρ∇2u.

The quantity ν is the kinematic viscosity, which is related to the dynamic viscosity µ by the
equation µ = ρν. Note that the quantity in the parentheses works out to a scalar of two
terms, and this scalar must be applied to each of the velocity components. In scalar form,
we have the momentum equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (6)

Flow Across a Flat Plate

We seek to solve the system (2,4,5,6) in a simple setting in which ambient flow of velocity
u = u∞ and v = 0 passes over a flat plate located at y = 0, x > 0, and −∞ < z <∞, where
y is the vertical coordinate. The domain for the differential equations is then x > 0, y > 0,
and there are auxiliary conditions at the two boundaries and also at y = ∞. The ambient
flow provides boundary conditions

u = u∞, v = 0, ρ = ρ0 at y =∞, x = 0.

No-flow conditions at the plate are

u = 0, v = 0 at y = 0.

There is no boundary condition for ρ at the plate because the differential equations are
only first-order in p. For a well-posed problem, there should be boundary conditions on the
velocity at x =∞, but these do not play any role in the problem.

The Outer Region

Observe that the ambient flow satisfies all requirements except the no-flow condition on u at
the plate. Thus, we have a boundary layer at y = 0 and need only consider the layer itself.

1This is what is called a Newtonian fluid. Some fluids are more complicated and solids are always so.
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Scaling in the Layer

We need to proceed with nondimensionalization before we can choose the correct scales.
There is no obvious length scale in the problem, so we assume that the correct scale in the
outer region is some quantity L. This will then be the correct scale in the inner layer for x,
while the scale for y in the layer will be δL, where δ is a small as-yet-unknown dimensionless
combination formed from L, u∞, c, and ν. Similarly, u∞ is the obvious scale for u, but we
clearly need a smaller scale αu∞ for v. We can scale time using L/u∞, and we are already
scaling density by ρ0 and density changes by ερ0. We will need to determine the correct
choices for α, δ, and ε in terms of the parameters L, u∞, c, and ν. It seems reasonable that
c will only enter into the scaling for ε, as it arises in the equation of state.

It is helpful at this point to identify two important parameters in fluid dynamics, the
Reynolds number and the Mach number:

Re =
u∞L

ν
, Ma =

u∞
c
� 1.

The Reynolds number is the ratio of inertial forces to viscous forces and is generally on
the order of 1000 to 10000, although it can be small for highly viscous fluids or very small
reference lengths. The Mach number is the ratio of fluid speed to sound speed, and is
generally small.

With the substitutions

x = LX, y = δLY, u = u∞U, v = αu∞V, t =
Lτ

u∞
,

the continuity equation becomes

∂U

∂X
+
α

δ

∂V

∂Y
= O(ε).

If the equation is to be properly scaled, there must be a dominant balance between two or
more terms, so the only possibility is to take α = δ. Thus, we have

UX + VY = 0. (7)

The momentum equations then become

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
+

ε

Ma2

∂S

∂X
=

1

Re

∂2U

∂X2
+

1

δ2Re

∂2U

∂Y 2

and
∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
+

ε

δ2Ma2

∂S

∂Y
=

1

Re

∂2V

∂X2
+

1

δ2Re

∂2V

∂Y 2
.

The scales can now be determined by dominant balance arguments.

1. Second derivatives with respect to Y must be important in the inner layer.

2. The scale ε must be chosen so that S enters into one of the equations at leading order.
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Note that the second dervatves in X are less important than the second derivatives in Y
because of small δ. The latter will be brought into the dominant balances of both equations
if we take δ2Re = 1. Given flow with a large Reynolds number, this does make δ small as
required.

Similarly, the extra factor of δ2 makes the gradient of S more important in the V equation
than the U equation. Including that term in the dominant balance of the former requires
ε = δ2Ma2, which means that density perturbations are extremely small. With these changes,
the steady-state leading order momentum equations are

UUX + V UY = UY Y (8)

and
UVX + V VY + SY = VY Y . (9)

Equations (7) and (8), along with the boundary conditions, are a well-posed problem for
the velocity components U and V , and then (9) serves to define the density and pressure
perturbations. The usual treatment of the problem usually considers only the flow itself, so
we neglect the additional equation for S. Some problems have a pressure gradient imposed
from outside the domain of the problem, in which case these terms are significant; here, the
pressure gradient induced by the movement of the fluid is too small to affect the flow.

Stream Function

Observe that the continuity equation (7) can be solved by assuming the existence of a stream
function ψ such that

U = ψY , V = −ψX . (10)

Of course we do not know if there is such a function, but we will attempt to find one that
satisfies the momentum equation (8) and the boundary conditions. Substituting from (10)
into (8) yields the differential equation that the stream function must satisfy:

ψY ψXY − ψXψY Y = ψY Y Y . (11)

The boundary conditions become

ψY = 1, ψX = 0 at Y =∞, X = 0, (12)

ψY = 0, ψX = 0 at Y = 0. (13)

Observe that the introduction of a stream function decreases the number of dependent vari-
ables at a cost of increasing the order of the equation.

Similarity Transformation

Although it is not obvious, there is a similarity transformation that reduces the stream
function problem (11-13) to a problem with just one independent variable. Since the cor-
rect similarity transformation cannot be determined by dimensional analysis, we begin by
assuming a general form

ψ = βXqf(η), η =
Y

δXp
, (14)
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where p and q must be determined and the coefficients α and β can be chosen for convenience.
Differentiating (14) with respect to Y and employing the nonhomogeneous boundary condi-
tion in (12) fixes one relationship between p and q. Computation of the remaining derivatives
of ψ and substitution into (11) fixes a second relationship between p and q, thereby deter-
mining the correct similarity structure. A convenient choice of α and β then yields the
problem

f ′′′ + ff ′′ = 0, f(0) = 0, f ′(0) = 0, f ′(∞) = 1 (15)

with U = f ′.

Solution by Shooting

Let g = f ′ and h = f ′′, thereby recasting (15) as a system

f ′ = g, g′ = h, h′ = −fh, (16)

with boundary conditions

f(0) = 0, g(0) = 0, g(∞) = 1. (17)

This system is difficult to solve numerically because of the boundary condition at ∞. How-
ever, we can instead consider the related family of initial value problems using the same
differential equations and the initial conditions

f(0) = 0, g(0) = 0, h(0) = σ. (18)

The initial value problem (16), (18) can be solved numerically for any given σ to define a
function γ(σ) by γ(σ) = g(R), where R must be large enough so that h(R) is close to 0.2

The solution will match that of the boundary value problem (16), (17) if σ can be chosen to
satisfy the equation γ(σ) = 1. This equation can be solved by an iterative technique that
does not require derivatives, such as the secant method. Each step in the secant method
calls for the determination of γ(σn), which is done by the numerical differential equation
solver. Few steps will be required because γ is clearly a monotone increasing function of σ.

2The differential equations have asymptotic behavior as t→∞ in which h→ 0, g → g∞, and f approaches
a linear function with slope g∞.
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