breed [cells cell] breed [ladybugs ladybug] globals [ maxticks ; total time for experiment -- set on setup/set-parameters movetime ; ticks required for a move -- set on setup/set-parameters waittime ; ticks required for a wait -- set on setup/set-parameters replace ; replacement or not -- set on setup/set-parameters move? ; move or wait -- set on go/reset-experiment, go/do-move, go/do-wait endtick ; ending tick for current move or wait -- set on go/reset-experiment, go/do-move, go/do-wait captures ; counts total captures -- set on go/reset-experiment, go/do-move bugnumber ; ID number for the ladybug -- set on go/populate capture? ; checks cell for aphid at end of move -- set on go/do-move/ask-capture deadcell ; ID number of captured cell -- set on go/do-move/ask-capture xlist ; list of x coordinate values -- set on setup, go ylist ; list of y coordinate values -- set on setup, go mstar ; best fit slope -- set on plot-models/do-type1 RSS1 ; RSS for type 1 -- set on plot-models/do-type1 AIC1 ; AIC for type 1 -- set on plot-models/do-type1 Vstar ; best fit max value parameter -- set on plot-models/do-type2 Kstar ; best fit semi-saturation parameter -- set on plot-models/do-type2 RSS2 ; RSS for type 2 -- set on plot-models/do-type2 AIC2 ; AIC for type 2 -- set on plot-models/do-type2 discrepancy ; local variable ] cells-own [ hex-neighbors ;; agentset of 6 neighboring cells ] ladybugs-own [ speed deltax ] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to setup clear-all output-print (word species ", replacement " replacement?) set-parameters make-world reset-ticks set-current-plot "Experiment Outcomes" plotxy 0 0 set xlist [] set ylist [] populate end ;;;;;;;;;;;;;;;;;;;;; to go reset-experiment populate foreach range maxticks [ tick ifelse move? [do-move] [do-wait] ] output-print (word aphids-start " prey, " captures " captures") set xlist lput aphids-start xlist set ylist lput captures ylist plotxy aphids-start captures end ;;;;;;;;;;;;;;;;;;;;; to plot-models set-current-plot-pen "linear" plot-pen-reset do-type1 plot-type1 set-current-plot-pen "Holling 2" plot-pen-reset do-type2 plot-type2 set-current-plot-pen "captures" end ;;;;;;;;;;;;;;;;;;;;; to save-output let file user-new-file if is-string? file [ let L length file ifelse L > 4 [if item (L - 4) file != "." [set file (word file ".csv")]] [set file (word file ".csv")] if file-exists? file [file-delete file] file-open file file-print (word species ", replacement " replacement?) file-print (word "") file-print (word "x values") file-print xlist file-print (word "") file-print (word "y values") file-print ylist file-print (word "") file-print (word "linear:") file-type (word "m = ") let d1 decimaldigits mstar 3 file-print (precision mstar d1) file-type (word "AIC = ") let d2 decimaldigits AIC1 3 file-print (precision AIC1 d2) file-print (word "") file-print (word "Holling 2:") file-type (word "V = ") let d3 decimaldigits Vstar 3 file-type (precision Vstar d3) file-type (word ", K = ") let d4 decimaldigits Kstar 3 file-print (precision Kstar d4) file-type (word "AIC = ") let d5 decimaldigits AIC2 3 file-print (precision AIC2 d5) file-close-all ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-parameters ;; on setup set maxticks 400 set-default-shape cells "hex" ifelse species = "P-steadius" [ set-default-shape ladybugs "ladybug-1" set movetime 9 set waittime 1 ] [ set-default-shape ladybugs "ladybug-2" set movetime 2 set waittime 8 ] ifelse replacement? [set replace 1][set replace 0] end ;;;;;;;;;;;;;;;;;;;;; to make-world ;; on setup ask patches [ set pcolor white sprout-cells 1 [ set size 0.7 set color white if pxcor mod 2 = 0 [set ycor ycor - 0.5] ] ] ask cells [ ifelse xcor mod 2 = 0 [ set hex-neighbors cells-on patches at-points [[0 1] [1 0] [1 -1] [0 -1] [-1 -1] [-1 0]] ] [ set hex-neighbors cells-on patches at-points [[0 1] [1 1] [1 0] [0 -1] [-1 0] [-1 1]] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to reset-experiment ;; on go set move? true set endtick ticks + movetime set captures 0 ask cells [set shape "hex"] ask ladybugs [die] end ;;;;;;;;;;;;;;;;;;;;; to populate ;; on go ask n-of aphids-start cells [set shape "aphid"] create-ladybugs 1 [ set size 0.9 set speed 1 / movetime set deltax 0.144 * speed move-to one-of cells with [shape = "hex" and ycor > 0] set heading 0 right one-of [-120 -60 0 60 120 180] ] ask ladybugs [set bugnumber who] end ;;;;;;;;;;;;;;;;;;;;; to do-wait ;; on go if ticks = endtick [ set move? true set endtick ticks + movetime ask ladybug bugnumber [ right one-of [-120 -60 -60 -60 -60 0 0 0 0 0 0 0 0 0 0 60 60 60 60 120] ] ] end ;;;;;;;;;;;;;;;;;;;;; to do-move ;; on go ask ladybug bugnumber [ forward speed (ifelse heading = 60 or heading = 120 [set xcor xcor + deltax] heading = 240 or heading = 300 [set xcor xcor - deltax] ) if ticks = endtick ; tidy up and set up for next phase [ set xcor round xcor set ycor 0.5 * round (2 * ycor) ask-capture ifelse capture? = true [ set captures captures + 1 if replace = 1 [ ask n-of 1 cells with [shape = "hex"] [set shape "aphid"] ] ask cell deadcell [set shape "hex"] set capture? false set move? false set endtick ticks + waittime ] [ set endtick ticks + movetime ] right one-of [-60 0 0 0 60] ] ] end ;;;;;;;;;;;;;;;;;;;;; to ask-capture ;; on go/do-move ask ladybug bugnumber [ let x xcor let y ycor ask cells with [xcor = x and ycor = y] [ if shape = "aphid" [ set capture? true set deadcell who ] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to do-type1 ;; on plot-models let Sxx dot xlist xlist let Sxy dot xlist ylist let Syy dot ylist ylist set mstar Sxy / Sxx set RSS1 Syy - mstar * Sxy let L length xlist set AIC1 L * ln(RSS1 / L) + 4 output-print (word "") output-print (word "linear:") output-type (word "m = ") let d1 decimaldigits mstar 3 output-print (precision mstar d1) output-type (word "AIC = ") let d2 decimaldigits AIC1 3 output-print (precision AIC1 d2) end ;;;;;;;;;;;;;;;;;;;;; to do-type2 ;; on plot-models fits Holling type 2 with Hanes-Woolf linearization let yh [] ( foreach xlist ylist [ [x y] -> set yh lput (x / y) yh ] ) let X [] let mean-x mean xlist foreach xlist [xx -> set X lput (xx - mean-x) X] let Y [] let mean-y mean yh foreach yh [yy -> set Y lput (yy - mean-y) Y] let Sxx dot X X let Sxy dot X Y let Syy dot Y Y let mh Sxy / Sxx let bh (mean-y - mh * mean-x) set Vstar 1 / mh set Kstar bh * Vstar set discrepancy [] (foreach xlist ylist [ [xx yy] -> set discrepancy lput (yy - Vstar * xx / (Kstar + xx)) discrepancy ] ) set RSS2 dot discrepancy discrepancy let L length xlist set AIC2 L * ln(RSS2 / L) + 6 output-print (word "") output-print (word "Holling 2:") output-type (word "V = ") let d1 decimaldigits Vstar 3 output-type (precision Vstar d1) output-type (word ", K = ") let d2 decimaldigits Kstar 3 output-print (precision Kstar d2) output-type (word "AIC = ") let d3 decimaldigits AIC2 3 output-print (precision AIC2 d3) output-print (word "") end ;;;;;;;;;;;;;;;;;;;;; to plot-type1 ;; on plot-models plotxy 0 0 let xmax max xlist plotxy xmax (mstar * xmax) end ;;;;;;;;;;;;;;;;;;;;; to plot-type2 ;; on plot-models plotxy 0 0 let xmax max xlist let dxplot xmax / 100 let xplot (range 0 xmax dxplot) foreach xplot [xx -> plotxy xx (Vstar * xx / (Kstar + xx))] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to-report dot [xvals yvals] let product [] ( foreach xvals yvals [ [x y] -> set product lput (x * y) product ] ) report sum product end ;;;;;;;;;;;;;;;;;;;;; to-report decimaldigits [number sigfigs] ; determines decimal digits from significant figures let nn abs number report sigfigs - 1 - floor (log nn 10) end @#$#@#$#@ GRAPHICS-WINDOW 468 10 908 451 -1 -1 36.0 1 10 1 1 1 0 1 1 1 0 11 0 11 1 1 1 ticks 30.0 BUTTON 138 150 198 183 NIL go NIL 1 T OBSERVER NIL NIL NIL NIL 0 SLIDER 8 150 130 183 aphids-start aphids-start 10 140 50.0 2 1 NIL HORIZONTAL CHOOSER 7 37 145 82 species species "P-steadius" "P-speedius" 0 MONITOR 247 151 304 196 aphids count cells with [shape = \"aphid\"] 0 1 11 MONITOR 315 151 377 196 NIL captures 0 1 11 BUTTON 295 39 358 72 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 SWITCH 156 39 285 72 replacement? replacement? 0 1 -1000 OUTPUT 8 236 192 496 11 TEXTBOX 12 15 189 45 Set at beginning of experiment. 12 0.0 1 TEXTBOX 12 124 243 154 Do one run of the experiment. 12 0.0 1 TEXTBOX 9 92 412 120 ---------------------------------------------------------------------------------------------------- 11 0.0 1 TEXTBOX 10 210 446 252 ------------------------------------------------------------------------------------------------------------ 11 0.0 1 PLOT 199 236 438 395 Experiment Outcomes prey density captures 0.0 140.0 0.0 41.0 false true "" "" PENS "captures" 1.0 2 -6917194 true "" "" "linear" 1.0 0 -12345184 true "" "" "Holling 2" 1.0 0 -2064490 true "" "" BUTTON 199 404 294 437 plot models plot-models NIL 1 T OBSERVER NIL NIL NIL NIL 0 BUTTON 339 405 437 438 save output save-output NIL 1 T OBSERVER NIL NIL NIL NIL 0 @#$#@#$#@ ## WHAT IS IT? BUGBOX-predator is a virtual version of the human simulation described in C.S. Holling's classic 1959 paper that derived of what is now called the Holling type 2 predation model. As Holling did with his students, instructors can use the observational experience from this virtual laboratory to build the intuition needed to derive the Holling type 2 predation model. Students can also do their own calculations to verify the best fit parameters and AIC values produced by the app. The simulation is centered around a predation experiment, in which a predator is placed in an arena with some prey and given a fixed amount of time to capture and handle the prey. The purpose of the experiment is to obtain results for the number of prey captures as a function of the initial prey density. There are two species of predator: P. steadius and P. speedius, whose characteristics roughly match their suggestive names. In addition to its use in deriving the Holling type 2 predation model, the virtual laboratory also provides examples of the use of AIC to compare models. Depending on how the P. steadius data turns out, it is possible that the linear model will get a better (lower) AIC score than the type 2 model, even though the type 2 model is mechanistically correct. ## HOW IT WORKS To keep things simple, the prey remain fixed in place. The predator moves randomly with speed and handling time determined by the user's choice of species. Prey animals are removed when encountered by the predator. These can be replaced, to maintain a constant prey population, or not, to better simulate a real experiment. Each run determines the number of captures and plots a point on a graph of captures vs initial prey population. The predator direction, like the prey locations, is determined stochastically, with a probability of 50% of going straight, 20% each for turning 60 degrees clockwise or counter-clockwise, and 5% each for turning 120 degrees clockwise or counter-clockwise ## HOW TO USE IT The model can be used simply to gain insight into the linear and Holling type 2 predation models. Observation of the simulation can help students understand the derivation of the two models by illustrating the importance of handling time, particularly when prey density is high. The first step in doing a virtual experiment is to choose the species and decide on replacement before hitting the 'setup' button. Then choose a start population and hit the 'go' button. The experiment will run for a fixed amount of time, all the while keeping track of the current prey population and the cumulative number of captures. At the end of the run, the values of starting prey population and capture count are printed in the monitor and a corresponding point is plotted on the graph. Use the prey count slider to repeat the experiment with different numbers of prey (hit the 'go' button, but don't hit the 'setup' button, which would delete prior results). This will gradually populate the graph with points. When you have a reasonable number of points, you can use the 'plot models' button, which calculates the best fit parameters for the linear and type 2 models and plots the corresponding models on the graph (the type 2 parameters are estimated using the Hanes-Woolf linearization, so they may differ slightly from the actual best fit parameters). The output monitor shows the parameter values and the corresponding AIC values for the fit. You can then add more data points and hit the 'plot models' button again to update the parameters and plotted curves. The 'save output' button saves the experiment parameters, the xy pairs, and the fitted parameters to a file of your choosing. If you do not include the file extension '.csv', the program will add that to your file name. ## THINGS TO NOTICE Do a few runs at normal speed, particularly with P. speedius, to build intuition about the assumption that the predator's time is spent handling prey as well as searching for it. Also look for the shapes of the best fit curves and for the corresponding AIC values. Keep in mind that lower AIC means that a model has more statistical support for the dataset. ## EXTENDING THE MODEL Instead of fixed values for movetime and waittime, you could have a slider that allows these to be entered into the interface. These must be integers and it is best that they sum to 10 for each species. Experiments could be done to determine how the parameter values in the Holling type 2 model depend on these parameters. This would be facilitated by the use of BehaviorSpace to program repeated experiments with pre-chosen prey start values. One can also experiment with different ways to define the "correct" prey population for runs without replacement. If the prey population goes from 30 to 20 during a run without replacement, should we use x=30, x=20, x=25, or something else? It may be difficult to identify any difference between these; one idea is to see if the AIC values differ with this choice. Keep in mind that actual AIC values do not matter; all that matters is that a lower AIC value is better and that an AIC difference of 1 unit or less should not be considered meaningful with stochastic data like that in this experiment. You can also use scientific computing software with the data in the output file to determine the parameters and AIC for the Holling type 2 model without linearization. These results are to be preferred over the results obtained in this program with the Hanes-Woolf linearization. ## NETLOGO FEATURES The creation of cells was copied from the Hex Cells example packaged with Netlogo. Since the prey doesn't move, the code identifies them simply by choosing a prey image for a cell to replace the standard hex image, rather than defining turtles of a different breed to represent the prey. Using ticks to mark time during a run was problematic because resetting ticks also resets the plot windows. Instead, a foreach loop is used to count steps in the simulation, with ticks used merely to trigger the display updates. This also allows an entire run, with setup and simulation, to be handled by a single one-time 'go' button. Another challenge was how to produce a plot that uses only summary points and not points based on data that updates with each tick. The Netlogo documentation is a bit obscure on this point. The solution is to omit all plot commands from the interface and enter these in the code instead. This is generally a best practice anyway, as commands in the interface or not as transparent as commands in the code. ## CREDITS AND REFERENCES The original BUGBOX software was written in python and converted to windows executable. It became dated when python was updated and some of the specialized packages needed for BUGBOX were not. Netlogo is a much better platform for agent-based modeling. The use of the companion software, BUGBOX-population, is described in Ledder, An Experimental Approach to Mathematical Modeling in Biology, published online by PRIMUS in 2008 and available at https://www.tandfonline.com/doi/abs/10.1080/10511970701753423. The Hanes-Woolf linearization is described in Ledder, Mathematical Modeling in Epidemiology and Ecology, Springer 2022, Section 2.5, where it is shown to be far superior to the more commonly used Lineweaver-Burk linearization. A fully nonlinear method is better, but difficult to implement in Netlogo. AIC is described in various places, including Section 2.4 of the Ledder book. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 aphid true 0 Circle -13840069 true false 108 154 82 Circle -13840069 true false 115 51 70 Line -16777216 false 150 60 105 15 Line -16777216 false 150 60 195 15 Circle -13840069 true false 120 210 60 Line -13840069 false 120 210 120 210 Circle -13840069 true false 110 178 78 Circle -13840069 true false 109 140 82 Circle -13840069 true false 108 127 82 Circle -13840069 true false 109 114 82 Circle -13840069 true false 108 108 82 Circle -13840069 true false 109 103 82 Circle -13840069 true false 109 94 82 Polygon -16777216 true false 121 105 130 110 173 111 180 103 172 109 130 108 119 102 Circle -16777216 true false 155 65 10 Circle -16777216 true false 136 65 10 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 hex false 0 Polygon -7500403 true true 0 150 75 30 225 30 300 150 225 270 75 270 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 ladybug-1 true 0 Circle -16777216 true false 102 34 96 Line -16777216 false 135 60 93 10 Line -16777216 false 165 62 218 8 Circle -2674135 true false 135 50 10 Circle -2674135 true false 156 50 10 Circle -2674135 true false 62 109 172 Circle -16777216 true false 131 178 32 Circle -16777216 true false 86 133 32 Circle -16777216 true false 177 133 32 Circle -16777216 true false 88 223 32 Circle -16777216 true false 175 223 32 ladybug-2 true 0 Circle -16777216 true false 102 34 96 Line -16777216 false 135 60 93 10 Line -16777216 false 165 62 218 8 Circle -955883 true false 135 50 10 Circle -955883 true false 156 50 10 Circle -955883 true false 62 109 172 Circle -16777216 true false 138 185 18 Circle -16777216 true false 108 140 18 Circle -16777216 true false 169 140 18 Circle -16777216 true false 195 186 18 Circle -16777216 true false 81 185 18 Circle -16777216 true false 110 230 18 Circle -16777216 true false 167 230 18 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 sheep false 15 Circle -1 true true 203 65 88 Circle -1 true true 70 65 162 Circle -1 true true 150 105 120 Polygon -7500403 true false 218 120 240 165 255 165 278 120 Circle -7500403 true false 214 72 67 Rectangle -1 true true 164 223 179 298 Polygon -1 true true 45 285 30 285 30 240 15 195 45 210 Circle -1 true true 3 83 150 Rectangle -1 true true 65 221 80 296 Polygon -1 true true 195 285 210 285 210 240 240 210 195 210 Polygon -7500403 true false 276 85 285 105 302 99 294 83 Polygon -7500403 true false 219 85 210 105 193 99 201 83 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 wolf false 0 Polygon -16777216 true false 253 133 245 131 245 133 Polygon -7500403 true true 2 194 13 197 30 191 38 193 38 205 20 226 20 257 27 265 38 266 40 260 31 253 31 230 60 206 68 198 75 209 66 228 65 243 82 261 84 268 100 267 103 261 77 239 79 231 100 207 98 196 119 201 143 202 160 195 166 210 172 213 173 238 167 251 160 248 154 265 169 264 178 247 186 240 198 260 200 271 217 271 219 262 207 258 195 230 192 198 210 184 227 164 242 144 259 145 284 151 277 141 293 140 299 134 297 127 273 119 270 105 Polygon -7500403 true true -1 195 14 180 36 166 40 153 53 140 82 131 134 133 159 126 188 115 227 108 236 102 238 98 268 86 269 92 281 87 269 103 269 113 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 6.2.2 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@