
Continuously Stirred Tank Reactor

Development of the Model

Let C(T ) be the concentration of the primary reactant in moles per m3, where T is time, so that
the total amount of reactant in volume V is V C(T ) moles. Let U(T ) be the temperature in K.
Then the heat energy in the reactor is ρcpV U , where ρ is the density in kg/m3 and cp is the heat
capacity in J/(kg K). Changes in the total amount of reactant and the total amount of heat energy
are determined by several physical processes:

1. Fluid flows into the reactor with flow rate q in m3/sec. This fluid has concentration C0 and
temperature U0.

2. The well-stirred mixture flows out of the reactor with the same flow rate q.

3. The reactor is cooled at a rate proportional to the difference between the reactor temperature
and the inlet temperature U0, with rate constant h in J/(K sec).

4. The reactant amount decreases at a rate proportional to the amount of reactant, with
temperature-dependent rate constant k in sec−1. This rate constant is determined by the
Arrhenius formula k = k0e

−E/RU , where E is the activation energy in J/mole and R is the
universal gas constant in J/(mole K).

5. The chemical reaction also increases the energy at a rate proportional to the rate of the
reaction, with proportionality constant Q in J/mole.

Using these assumptions, we obtain the model

V
dC

dT
= q(C0 − C) − kV C, (1)

ρcpV
dU

dT
= ρcpq(U0 − U) − h(U − U0) +QkV C, (2)

k = k0e
−E/RU . (3)

Nondimensionalization

The model (1-3) has 11 parameters, along with the constantR. Its analysis is considerably simplified
by nondimensionalization, which eliminates some parameters and groups the rest into a small
number of dimensionless combinations. To nondimensionalize the model (1-3), we replace the
original dimensional variables with dimensionless counterparts using the substitutions

T =
V

q
t, C = C0(1 − x), U = U0 +

U0

α
u. (4)

Note that x is the fraction of initial reactant concentration that has been reacted at time t; hence it
measures the progress of the reaction, with x = 0 for no reaction and x = 1 for complete reaction.
[The model is slightly easier to analyze using the progress variable x rather than the dimensionless
concentration c = C/C0.] The reduced temperature u is set so that u = 0 when U = U0 and u = α
when U = 2U0. (Keep in mind that U and U0 are absolute temperatures, so room temperature of
70◦F= 21◦C would be U0 = 294K; hence, 2U0 = 588K= 315◦C= 600◦F.
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With the additional simplification that external cooling is unimportant, the dimensionless model
is

x′ = −x+ Da(1 − x)e
u

1+u/α , x(0) = 0; (5)

u′ = −u+ β D(1 − x)e
u

1+u/α , u(0) = 0, (6)

where α is a dimensionless activation energy, β is a dimensionless measure of how much heat is
released by the reaction, and D is a measure of the relative importance of the chemical reaction to
the flow when the temperature is U0. The reactor will be more productive for smaller values of D.
This parameter is easily adjusted by controlling the flow rate q.

Simplification

1. Define a new function z by the formula

z = u− βx. (7)

Use this definition and the initial value problems (7) and (8) to obtain an initial value problem
for z.

2. Solve the initial value problem from step 1.

3. Use the definition of z from step 1 and the solution for z from step three to obtain a formula
for u as a function of x.

4. Substitute the formula for u into (5) to obtain a single initial value problem for the reactant
progress variable x. The resulting equation will contain β in one place and β/α in another.
For algebraic convenience, define a new parameter δ = β/α.

Your final result from this simplification is a single initial value problem with just two parame-
ters. Part 3 will be the study of this problem using qualitative and numerical methods.
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