
Euler Methods

The interpretation of a differential equation as a formula for the rate of change of a function
leads to the development of the direction field, which is a tool for visualizing solution curves without
finding solution formulas. If we want to approximate solutions, rather than merely visualize them,
we need a computational technique. This simplest way to do this is with Euler’s method (named
after the 18th century Swiss mathematician Leonhard Euler1), which is based on the direction field.
We will see that Euler’s method has some difficulties, but we’ll develop the improved Euler method,
which is suitable for most problems.

MODEL PROBLEM 1

Approximate the solution of
dy

dt
=

8e−t

3 + y
, y(0) = 0

without using the solution formula.

Figure 1 shows the direction field for the differential equation of Model Problem 1. In the
absence of a solution formula, some method is needed to add solution curves to the direction field
plot. This is a numerical problem; in other words, some computational approximation is needed to
use the data about the direction field to construct approximate solution curves.
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Figure 1: The direction field for dy/dt = (8e−t)/(3 + y)

1. A First Approximation

To begin, suppose we just want to approximate the solution on the interval 0 ≤ t ≤ 0.2. There
are only two pieces of information about the solution curve that we know for sure. First, it passes
through the initial point (0,0). Second, its slope at the point (0,0) can be calculated using the

1The correct pronunciation is “Oy-ler.”
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differential equation: y′|(0,0) = 8e−t/(3 + y)|(0,0) = 8/3 ≈ 2.667. Graphically, this means that the
solution curve has slope 8/3 at the point (0,0), as depicted by the minitangent in the direction field.
The simplest way to approximate the solution on 0 ≤ t ≤ 0.2 is to draw the straight line segment
through the point (0,0) in the direction of the minitangent and ending at a point where t = 0.2.
Figure 2 shows this line segment along with the direction field.
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Figure 2: A line segment approximation for dy/dt = (8e−t)/(3+y), y(0) = 0 on the interval [0,0.2],
along with the direction field

The y coordinate of the right end of the line segment can easily be determined from

∆y = (slope)∆t = (8/3)(0.2) ≈ 0.533

and
y(0.2) ≈ 0 + 0.533 = 0.533 .

This calculation is illustrated in Figure 3.
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Figure 3: The line segment from (0,0) to t = 0.2 in the approximation for Model Problem 1

Now suppose we want to approximate the solution on the interval 0 ≤ t ≤ 0.4. We can use the
line segment just calculated up to t = 0.2, and then we can use the same procedure on the interval
0.2 ≤ t ≤ 0.4. We sketch a line segment from the point (0.2, 0.533) to t = 0.4, using the slope of
the minitangent at (0.2, 0.533), which is approximately 1.854. To find the y coordinate of the right
end, we have

y = 0.533 + ∆y = 0.533 + (1.854)(0.2) ≈ 0.904 .

Figure 4 shows this approximation along with the direction field.
We can continue to use this same procedure to get more line segments approximating portions

of the solution curve, in general using information at point n to estimate the solution at point n+1.
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Figure 4: A line segment approximation for dy/dt = 8e−t/(3 + y), y(0) = 0 on the interval [0,0.4],
along with the direction field

This technique of approximating the solution on intervals [tn, tn +∆t] by using line segments whose
slopes are determined at t = tn is called Euler’s method.

INSTANT EXERCISE 1
Determine the next point (t = 0.6) on the graph of the straight-line approximation to the problem

dy

dt
=

8e−t

3 + y
, y(0) = 0 .

The full set of points obtained in this manner up to t = 1 is given in the Table 1. All values
are rounded off to 3 decimal digits.

t 0 0.2 0.4 0.6 0.8 1.0

y 0 0.533 0.904 1.179 1.389 1.553

dy/dt 2.667 1.854 1.374 1.051 0.819

Table 1: Approximate values for y and dy/dt for Euler’s method applied to Model Problem 1 on
the interval [0, 1], with ∆t = 0.2

The upper curve in Figure 5 shows the approximate solution along with the direction field.
Clearly the approximation is not perfect. A close look at the figure shows that each line segment is
parallel to the direction field at its left end, but not at its right end. This is so because the solution
curve is really curved ; that is, the slope of the correct solution curve changes continuously, while
the slope of the approximate solution curve changes only at specific points separated by a distance
∆t = 0.2.

Normally, it is difficult to know the accuracy of an approximation. In this case, there is a
solution formula:

y =
√

25− 16e−t − 3.

This function is the lower curve in Figure 5.

INSTANT EXERCISE 2

Solve Model Problem 1, using the method of separation of variables.
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Figure 5: The Euler approximation for dy/dt = 8e−t/(3 + y), y(0) = 0, with ∆t = 0.2, along with
the direction field and the exact solution, y =

√
25− 16e−t − 3

2. Euler’s Method in General

We will want to apply Euler’s method to any problem of the form

dy

dt
= f(t, y), y(t0) = y0, (1)

where the initial point satisfies the requirements of the existence/uniqueness theorem. We assume
that we want to approximate the problem for the range t0 ≤ t ≤ tf , with tf any value of t larger
than t0. (In practice, the method works equally well for tf ≤ t ≤ t0, with tf < t0.)

Assume that we want to divide the interval [t0, tf ] into N equal subdivisions, and that we want
to approximate y(t) at each of the subdivision points by a quantity yn. The step size is

∆t =
tf − t0
N

and the subdivision points are

tn = t0 + n∆t, n = 0, 1, · · · , N. (2)

In particular, the last point is tN = tf . Notice that the t coordinates of the approximation points
are all determined in advance by the choices of initial condition, final point, and number of steps.
The y coordinates of the approximation points must be determined sequentially, from left to right,
by assuming that the slope of each line segment is that of the minitangent at the left endpoint.

Initially, we know only y0. On the first interval [t0, t1], we approximate the slope m1 by

m1 ≈ m1e = f(t0, y0),

where the extra subscript e indicates that the slope is that of Euler’s method rather than some
other method. A line segment on an interval of length ∆t yields the approximate change in y of

∆y1 = m1∆t.

The right endpoint of the line segment is the point (t1, y0 + ∆y1). We want y1 to approximate the
y coordinate at the point t1, so we choose

y1 = y0 + ∆y1.
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The same calculation works for the next subinterval and, in turn, all the others.
We can use a pair of formulas to calculate any yn+1 from the previously calculated yn. We first

calculate a slope,
mn+1,e = f(tn, yn) (3)

for interval n+ 1 and then use it to calculate a linear approximation for the point at the right end
of the interval,

yn+1 = yn +mn+1,e∆t. (4)

The full Euler approximation is obtained by calculating all points (tn, yn) with Equations (2–4),
starting with n = 0, and then connecting the points with line segments. See Figure 6.
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Figure 6: A line segment in Euler’s method for the general case

3. Improving the Results

The results of the calculations do not seem to be very good, and a careful examination of Figure
5 shows why. The point (0, 0) is on the correct solution curve, but the next approximation point,
(0.2, 0.533), is not. This point is on a different solution curve. If we could avoid making any further
error beyond t = 0.2, the numerical approximation would follow a solution curve from then on,
but it would not be the correct solution curve. The amount of error ultimately caused by the
error in the first approximation step can become larger or smaller at later times, depending on the
relationship between the different solution curves.2 The real situation is more complicated, because
additional error is introduced at each step of the approximation.

As we have noted, the slope of the correct solution curve changes continuously, while the slope of
the approximate solution curve changes only at specific points separated by a distance ∆t. It seems
reasonable to guess that we can get a better approximation by using a smaller value of ∆t. This
means that the slope of the approximate solution curve will be corrected more often. Instead of
using subintervals of width 0.2, we could try using subintervals of width 0.1 or less. We cannot just
make ∆t extremely small without introducing other difficulties. Using smaller subintervals means
that the slope is changed more often, but at a cost of more calculations. (Taking ∆t = 10−9, for
example, would require calculation of 1 billion data points to obtain the graph.) The approximations
using the values 0.2 and 0.1 are illustrated in Figure 7, along with the correct solution. The circles
near the correct solution curve were obtained with ∆t = 0.025; these are almost accurate to visual
standards.

2You can find more complete information about error propagation in many differential equations books.
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Figure 7: The Euler approximations using ∆t = 0.2 and ∆t = 0.1, for dy/dt = 8e−t/(3 + y),
y(0) = 0, along with the correct solution y =

√
25− 16e−t − 3 and data points obtained with

∆t = 0.025

The error decreases to roughly half when the step size is cut in half. (See Table 2.) This is a
general property of Euler’s method.

Approximation Solution Error

t ∆t y(t) ∆t
0.2 0.1 0.05 0.025 0.2 0.1 0.05 0.025

0.2 0.533 0.488 0.468 0.459 0.450 0.083 0.038 0.018 0.009
0.4 0.904 0.837 0.807 0.792 0.778 0.126 0.059 0.029 0.014
0.6 1.179 1.099 1.062 1.045 1.027 0.152 0.072 0.035 0.018
0.8 1.389 1.301 1.259 1.240 1.220 0.169 0.081 0.039 0.020
1.0 1.553 1.458 1.414 1.393 1.372 0.181 0.086 0.042 0.021

Table 2: Comparison of results for Euler’s method applied to Model Problem 1 on the interval [0, 1]
with several different step sizes

4. A Test Problem

Consider the family of problems

y
dy

dt
=
π

2
cosπt, y(0) = y0 ≈ 1. (5)

This problem has solution

y =
√
y20 + sinπt. (6)

INSTANT EXERCISE 3

Derive the solution formula for the test problem (5).

The test problem is interesting for two reasons. First, the solution is periodic, with y(n) = y0
for any positive integer n. This gives us a convenient check on quantitative accuracy over a long
interval. Second, the interval of existence of the solution depends critically on y0. If y0 > 1, then
the solution exists for all t. If y0 < 1, the solution ceases to exist a bit sooner than t = 3/2. Error
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in the method may lead to failure in these qualitative results. It could be that solutions will cease
to exist for some y0 values greater than 1 or will continue to exist for some y0 values less than 1.
We cannot expect a numerical method to give an exact answer, but we must be alert to the danger
that a numerical answer is qualitatively wrong.

Figure 8 shows the exact solution to the test problem with y0 = 1 on the interval [0, 2] along
with the Euler approximations using 100 steps and 200 steps. The exact solution drops to exactly
0 at t = 1.5 and then rebounds. The numerical approximations are visually acceptable up to about
t = 0.5, but soon afterward they drift away from the exact solution. At t = 1.5, the error is
qualitative as well as quantitative. Curiously, the approximate solutions come back close to the
exact solution after that, although the same problem will occur at t = 3.5, the next time the exact
solution reaches 0.
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Figure 8: The Euler approximations for y dy/dt = (π/2) cosπt, y(0) = 1, using 100 and 200 time
steps on the interval [0, 2], along with the exact solution (dashed)

Now suppose y0 = 0.9. In this case, the solution should cease to exist when y reaches 0 at
t ≈ 1.30. Figure 9 shows the approximations on the interval [0, 2] with 200 and 400 time steps.
The solution does not stop at t = 1.30, but it clearly exhibits some strange behavior near that
point. The approximate curves quickly move away from y = 0, but the direction in which they
move depends on the step size. What is happening?

We can draw one conclusion simply from the observation that doubling the number of steps
makes a drastic change in the numerical result. Doubling the number of steps should make the
approximation look more like the correct solution, in which case we should not be seeing a qualitative
difference between the two approximations. This should make us suspicious even if we do not have
a solution formula or any other knowledge. This sort of behavior indicates that the method is not
working, and it suggests that there is something unusual about the solution at that point.

Careful examination of the differential equation also helps explain the problem. In the form
dy/dt = f(t, y), the differential equation is

dy

dt
=
π cosπt

2y
.

The function that gives the slope is unbounded as y → 0. As y becomes small, the calculated
slopes become large. If y is negative at such a point, we will get a large negative slope; otherwise
we will get a large positive slope. A large slope magnifies the error made in using a line segment
to approximate the solution curve. Each of the sudden jumps in Figure 9 is the result of one slope
calculation that yields a result large in magnitude. It is simply a coincidence that one of these
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calculations was done at a point with positive y and the other with negative y. The errors in these
calculations are so large that the results beyond these points are meaningless.
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Figure 9: The Euler approximations for y dy/dt = (π/2) cos(πt), y(0) = 0.9 using 200 and 400 time
steps on the interval [0, 2]

The importance of this example can hardly be overstated. Computers are a wonderful tool for
approximating and visualizing the solutions of differential equations. However, computers cannot
tell whether something is wrong with their calculations unless they are programmed to do so.
Professional numerical differential equation solvers generally avoid difficulties such as these, but no
numerical scheme is so good as to be immune to trouble. The educated user needs to be able to
look at numerical results and spot indications of trouble. Difficulties such as we have seen here are
caused by a combination of method error3 and ill-conditioning of the differential equation.4

5. The Improved Euler Method

Euler’s method is the most conceptually clear way to approximate the solutions of differential
equations, but we’ve seen that it doesn’t always work well and we know why: it fails to account
for the change in the slope of solution curves on a time interval. The key to improving on Euler’s
method is to keep the update formula (4), but improve on the slope approximation formula (3).
We will use

yn+1 = yn +mn+1,i∆t, (7)

where mn+1,i is an “improved Euler” slope used for interval n+ 1.
The question, of course, is how do we get a better approximation of the slope when we have so

little information to work with? If we could calculate the slope at any point on the solution curve,
then the best thing to do would be to average the slopes at the points (tn, yn) and (tn+1, yn+1)
and use that average as the slope for segment n, which connects these two points. We can’t do
that because we can’t calculate yn+1 until after we have chosen the approximate slope for the
segment. The improved Euler method is based on the simple idea that we can use Euler’s method
to approximate yn+1 and then use that approximate value to approximate the slope at the right
end of the line segment. The formulas needed to calculate yn+1 are then

me = f(tn, yn), (8)

y+ = yn +me∆t, (9)

3In the context of numerical approximations, the word error does not mean that the approximation scheme
or computer is making a mistake. Rather, it refers to errors that are a natural consequence of the numerical
approximation. An example is the rounbd-off error that occurs when a computer uses a finite number of digits for π.

4These topics are explored further in books on numerical methods for ordinary differential equations.
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m+ = f(tn+1, y
+), (10)

m = 0.5(me +m+), (11)

and
yn+1 = yn +m∆t, (12)

where we have suppressed the unnecessary subscripts for the improved Euler slope and used the
plus sign to indicate approximations for interval n+ 1 based on the Euler approximation for yn+1.

To calculate the first point in Model Problem 1, we have n = 0, tn = 0, and y0 = 0. Taking
∆t = 0.2 as we did with Euler’s method, we have5

me = f(tn, yn) =
8e0

3 + 0
=

8

3
≈ 2.6667,

y+ = yn +me∆t = 0 +

(
8

3

)
(0.2) ≈ 0.5333,

m+ = f(tn+1, y
+) =

8e−0.2

3 + 0.5333
= 1.8537,

m = 0.5(me +m+) = 0.5(2.6667 + 1.8537) = 2.2602.

and
y1 = y0 +m∆t = 0.4520.

Compared to the correct answer of 0.4500, this is an error of only 0.0020. From Table 2 and the
rule that doubling the Euler step size halves the error, we can estimate that Euler’s method needs
∆t = 0.005 to achieve a similar accuracy. What requires 40 steps of Euler’s method to accomplish
can be done with just one step of the improved Euler method.

INSTANT EXERCISE 4

Use the improved Euler method to calculate y2 ≈ y(0.4) from the starting point (0.2, 0.4520).

Is the improvement in the improved Euler method always this good? No. Sometimes it is
much better than 40 to 1! Whether the improvement is small or large depends on the differential
equation. Regardless of the problem, the improved Euler method has the general property that
cutting the step size in half cuts the error by a factor of 4 rather than a factor of 2, as with Euler’s
method.

Example 1
Obtain a numerical approximation for the solution of

y
dy

dt
=
π

2
cosπt, y(0) = 1.01 (13)

with error less than 0.001 at each point.
First note that the performance of Euler’s method on this problem is not impressive. Although the

solution,
y =
√

1.0201 + sinπt,

is defined for all t, Euler’s method has difficulty approximating this solution when it is near its minimum
point at (1.5,0.1418). Figure 10 shows the Euler approximations with 100 and 200 time steps on the interval
[0, 2].

5Most books combine formulas (8)–(12) into one single ugly formula. This is fine if you want fewer formulas and
don’t mind more computational errors. Whether working problems by hand or coding them on a computer, you will
make far fewer errors with a sequence of simple formulas than with one complicated formula.
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Figure 10: The Euler approximations for Model Problem 1 using 100 and 200 steps (solid) along
with the exact solution (dashed)

By trial and error, it turns out that Euler’s method requires N = 2047 over the interval [0, 1.5] to achieve
an error less than 0.01. Since doubling the number of steps roughly halves the error, we can expect to have
to increase the number of steps by a factor of 10 to reduce the error by a factor of 10 so as to get the
error down to 0.001. By this estimate, we would need to use more than 20,000 steps to achieve the desired
accuracy with Euler’s method!

Figure 11 shows the improved Euler approximation for (13) with just 20 time steps as points, along with
the exact solution.
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Figure 11: The improved Euler approximation with 20 steps (points) for Model Problem 2.6 along
with the exact solution

We noted earlier that Euler’s method achieves an error less than 0.01 at t = 1.5 only with 2047 steps

or more. In contrast, the improved Euler method achieves the same accuracy with only 33 steps. Since

each step requires two function evaluations, the computer time required for this level of accuracy with the

improved Euler method is about 3.2% of that required for Euler’s method. The comparison between the

methods is even more striking when one looks at the effort required to achieve a high degree of accuracy.

Whereas Euler’s method was estimated to require more than 20,000 steps to achieve an error less than 0.001,

trial and error shows that the improved Euler method accomplishes this goal with just 91 steps, or 182

function evaluations, which is less than 1% of the requirement for Euler’s method. �
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Methods that use the update formula yn+1 = yn +mn+1 ∆t are called Runge6-Kutta methods.
The improved Euler method is excellent, but it is far from the best. Most people who write their
own simple computer codes use the “classical” Runge-Kutta method, known generally as RK4,
which averages four different slopes to calculate m. Many professional ODE solvers use a variant
of RK4, called RKF4, which uses additional calculations to monitor the error and modify the step
size if the error is too large. For reference, RK4 is defined by

m1 = f(tn, yn), (14)

m2 = f(tn + 0.5 ∆t, yn + 0.5m1 ∆t), (15)

m3 = f(tn + 0.5 ∆t, yn + 0.5m2 ∆t), (16)

m4 = f(tn+1, yn +m3 ∆t), (17)

and

m =
m1 + 2m2 + 2m3 +m4

6
. (18)

The similarity to the improved Euler method is not too hard to see: m1 and m4 are approximate
slopes at the beginning and end of the interval and m2 and m3 are two different approximations
for the slope at the midpoint. The weights 1/6, 1/3, 1/3, and 1/6 give just the right average for
a very high degree of accuracy. While cutting the step size decreases the error by a factor of 2 for
Euler’s method and 4 for the improved Euler method, it decreases the error by a factor of 16 for
the RK4 method.

EXERCISES

Note: Exercises with an asterisk in front of the number require a computer.

1. Consider the problem
dy

dt
+ y = 2t+ 2, y(0) = 2,

which has solution y = 2t+ 2e−t.

a. Use Euler’s method (do not use a computer program) with step size 0.1 to approximate y(0.1), y(0.2),

y(0.3), and y(0.4).

b. Use the improved Euler method (do not use a computer program) with step size 0.2 to approximate y(0.2)

and y(0.4) for the problem.

c. Compare the results with the exact solution.

2. Consider the initial-value problem

x
dy

dx
= 2y, y(1) = 2.

a. Find the exact solution.

b. Use Euler’s method (do not use a computer program) with step size 0.25 to approximate y(1.25), y(1.5),

y(1.75), and y(2).

c. Use the improved Euler method (do not use a computer program) with step size 0.5 to approximate y(1.5)

and y(2) for the problem.

d. Compare the results with the exact solution.

6Run-guh
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*3. Consider the initial-value problem

dy

dt
= 2ty2, y(0) = 5.

a. Find the exact solution.

b. Use Euler’s method with step size of 0.02 to approximate y(0.4). Compare the approximation with the

correct solution and determine the magnitude of the error.

c. Repeat part b, using step sizes of 0.01 and 0.005. What effect does halving the step size have on the

error?

d. Use the improved Euler method with step size of 0.05 to approximate y(0.4). Compare the approximation

with the correct solution and determine the magnitude of the error. Compare this result with parts b and c.

e. Repeat part d using step sizes of 0.025 and 0.0125. What effect does halving the step size have on the

error?

f. Plot the approximations and the exact solution.

*4. Consider the initial-value problem

dy

dt
=

2 sin t

1− y
, y(0) = −1

a. Find the exact solution.

b. Use Euler’s method with 18 steps on the interval [0, 1.8].

c. Repeat part b, using 36 steps and 72 steps.

d. Plot the approximations along with the exact solution. Can you explain the graph?

e. Use the improved Euler method with 9 steps on the interval [0, 1.8].

f. Repeat part a, using 18 steps and 36 steps.

g. Plot the approximations along with the exact solution.

h. Compare with the results of parts e and f with those of parts b and c.

INSTANT EXERCISE SOLUTIONS

1. The current point is t2 = 0.4, y2 = 0.904. The slope at this point is

8e−t2

3 + y2
≈ 1.374.

The change in y is determined by
∆y ≈ 1.374∆t = 0.275.

(Note that we are rounding at the third digit because previous values were already rounded at that point.)

Thus, y3 = 1.179.

2. The equation in separated form is

(3 + y)
dy

dt
= 8e−t.

Integration and substitution yield ∫
(3 + y) dy = 8

∫
e−t dt,

or

3y +
y2

2
= −8e−t + C.

This implicit solution formula can be solved explicitly for y by completing the square. First multiply both
sides by 2 to get

y2 + 6y = 2C − 16e−t.
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Adding 9 to both sides completes the square:

y2 + 6y + 9 = (2C + 9)− 16e−t,

or
(y + 3)2 = A− 16e−t,

where A is an arbitrary constant. This is a convenient point at which to determine the constant. The
solution passes through the origin if A = 32 + 16 = 25. Thus,

(y + 3)2 = 25− 16e−t.

There are two possible solutions to this last equation:

y = −3±
√

25− 16e−t.

The positive root is the correct one because y(0) > −3. Thus,

y =
√

25− 16e−t − 3.

3. The equation is already separated, but it is convenient to multiply by 2 before integrating. We have∫
2y dy =

∫
π cosπt dt.

The integration yields
y2 = sinπt+ C,

and the initial condition yields C = y20 . Since y0 > 0, the correct square root is the positive one, so the

result is Equation (6).

4. y2 = 0.7817

01/18/2020 Glenn Ledder
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