
SOLVING FIRST-ORDER LINEAR EQUATIONS

In this section, we will discover a general method that can be used in principle to solve any
first-order linear equation.1

1. An Illustrative Example

Suppose we want to solve the initial value problem

dy

dx
+ 2y = 4x, y(0) = 1. (1)

This equation is linear, but not separable, so we need a new method called variation of parame-
ters. The idea is that the linear equation (1), which is nonhomogeneous, is closely related to the
homogeneous equation

dy

dx
+ 2y = 0, (2)

which is separable as well as linear. Equation (2) has the general solution

y = Cy1(x), y1(x) = e−2x.

The idea of variation of parameters is to look for a solution of a nonhomogeneous equation like
(1) that is similar to the solution of the associated homogeneous equation, with the parameter C
replaced by a function u(x). So we assume that the solution of (1) has the form

y(x) = u(x)y1(x) = e−2xu(x), (3)

where u is a function to be determined. In effect, we are converting the original equation with
unknown y(x) into a new equation with unknown u(x). To do this, we first take the derivative of
(3), getting

y′ = e−2xu′(x) − 2e−2xu(x) (4)

from the product rule. Then we substitute (3) and (4) into (1) to get a differential equation for u:

[e−2xu′(x) − 2e−2xu(x)] + 2[e−2xu(x)] = 4x.

The u terms cancel, leaving
e−2xu′(x) = 4x,

or
u′(x) = 4xe2x. (5)

At this point it is good to step back and review what we did. We started with a linear differential
equation (1) for y. We arbitrarily wrote the unknown solution y in terms of an unknown function
u in Equation (3). We obtained the differential equation (5) for u by substituting (3) into (1). In
effect, Equation (3) defines u by u = e2xy. If the y equation has a solution, then so does the u
equation, and vice versa. So replacing y with u does no harm. Does it do any good? To answer
this, compare the two equations (1) and (5). Equation (1) is a differential equation we can’t solve
using separation of variables. Equation (5) is a mere calculus problem because the function u does
not appear in the equation except as u′. So the new problem is MUCH better than the original
problem.

1“In theory, there is no difference between theory and practice. In practice, there is.” — Yogi Berra
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We can find u using integration by parts, which we should think of as∫
r(x)s′(x) dx = r(x)s(x) −

∫
r′(x)s(x) dx. (6)

We can write the integration by parts formula using any symbols for the two functions that we like,
except for symbols that have a specific meaning in our problem. So we can’t use the usual notation
with functions u and v. Taking r = x and s′ = 4e2x, we have r′ = 1 and s = 2e2x. So

u =

∫
4xe2x dx = 2xe2x −

∫
2e2x dx = 2xe2x − e2x + C = (2x− 1)e2x + C. (7)

Combining this result with Equation (3) gives us the solution family2

y = 2x− 1 + Ce−2x. (8)

The last step is to apply the initial condition to determine the constant C. Substituting x = 0
and y = 1 into the general solution (8) yields the equation 1 = −1 + C, so C = 2. The solution of
the initial value problem is

y = 2x− 1 + 2e−2x. (9)

2. Summary of the Method

To solve a differential equation of the general form

a1(x)y′(x) + a0(x)y(x) = g(x), (10)

we employ the method of variation of parameters:

1. Use separation of variables to find a solution y1 of the associated homogeneous equation

a1(x)y′(x) + a0(x)y(x) = 0. (11)

2. Substitute the form
y(x) = u(x)y1(x) (12)

into the original differential equation (10), thereby obtaining a new differential equation of
the form

u′(x) = U(x), (13)

where U is whatever appears on the right side of the new equation.

3. Integrate U to obtain a formula for u(x). It is okay to omit the integration constant from
this formula.

4. Write the solution of the original problem as

y(x) = Cy1(x) + u(x)y1(x). (14)

2Note that the homogeneous solution Cy1 is part of the solution of the full problem. Taking C = 0 for convenience
gives us a particular solution y = 2x− 1. You can easily check that this function solves the original problem. Instead
of having the integration constant C in the formula for u, we could have left it out and then written our final solution
as y = Ce−2x + ue−2x.
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As before, let’s step back and take stock of what we have. The four steps in the procedure worked
fine for the illustrative example. Will this procedure always work? The answer is a qualified yes
because complications can arise.

1. In theory, step 1 should always work (provided the requirements of the existence theorem are
met) because (11) can always be separated as

y′

y
= −a0(x)

a1(x)

and then

ln y = −
∫

a0(x)

a1(x)
dx.

In practice, we might not be able to find an elementary antiderivative for a0(x)/a1(x). This
difficulty can be overcome by using a definite integral to define y1, but that makes the problem
much harder.

2. Step 2 always works. When (12) is substituted into (10), the function u always disappears,
giving an equation that can be solved algebraically for u′.

3. Step 3 has the same problem as step 1. If we can’t find an elementary antiderivative for U ,
then we have to use a definite integral to define u.

4. Step 4 always works.

3. More Examples

Example 1
Solve

xy′ − 4y = x6ex.

1. We start by separating variables to solve

xy′ − 4y = 0.

Separation results in the integral form ∫
1

y
dy =

∫
4

x
dx.

Since any solution can serve as y1, we can ignore absolute values and integration constants, so we get

ln y = 4 lnx = lnx4,

with the final result
y1 = x4.

2. Next we assume
y = x4u(x),

so then
y′ = x4u′ + 4x3u.

Substituting this into the original equation and canceling the u terms yields

x5u′ = x6ex,

which means
u′ = xex.

3



3. We can integrate this to get an antiderivative

u = (x− 1)ex.

4. Substituting back into y = x4u gives us a particular solution y = (x5 − x4)ex. The solution of the
original problem is then

y = Cx4 + (x5 − x4)ex.

�

Example 2
Solve

y′ + y = f(x) =

{
1, 0 ≤ x ≤ 1
0, x > 1

, y(0) = 0.

This problem must be handled carefully because it consists of two different differential equations, one
for x < 1 and one for x > 1. They have to be solved separately and then patched together.

For x > 1 we have the homogeneous equation

y′ + y = 0,

which has solution
y = C2e

−x, x ≥ 1. (15)

Note that we are naming the constant C2. We’ll use C1 for the constant in the other solution. These
constants usually have different values. Note also that we do not have an initial condition for this solution.
Our initial condition is at x = 0, but that is not part of the interval of definition for this solution. We will
have to use the solution on 0 ≤ x ≤ 1 to obtain y(1) before we can find C2.

Equation (15) gives us the homogeneous solution of the equation for x < 1, so we can assume

y = e−xu(x), 0 ≤ x ≤ 1. (16)

Substituting the formula into y′ + y = 1 eventually gets us to e−xu′ = 1, or

u′ = ex.

This has a solution u = ex, so (16) gives us the particular solution y = e−xex = 1. A quick check shows that
we might have been able to guess that to be a solution of y′ + y = 1. Of course it is not all the solutions of
that equation. All of them are given by adding the homogeneous solution:

y = 1 + C1e
−x, 0 ≤ x ≤ 1. (17)

Taken together, (15) and (17) are the solutions of the differential equation. The initial condition must
be satisfied by (17). With x = 0 and y = 0, we get C1 = −1. Thus, the solution for x ≤ 1 is

y = 1 − e−x, 0 ≤ x ≤ 1. (18)

From this solution, we specifically obtain
y(1) = 1 − e−1,

and this serves as the initial condition needed to find C2, with the result C2 = e− 1. The full solution is

y =

{
1 − e−x, 0 ≤ x ≤ 1

(e− 1)e−x, x > 1
, y(0) = 0.

�
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