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Abstract. We formulate and analyze two dynamic energy budget models, a net assimilation
model with constant allocation strategy and a net production model with a 2-stage allocation
strategy, with the objective of determining strategies that maximize the expected lifetime
reproductive energy. The per capita death rate depends on the organism’s size, as for example
when the main cause of death is predation by a small predator. In the analysis of the net
production model, the size at maturity is calculated along with the probability of reaching
that size. We show that a small probability of survival to maturity is incompatible with the
simple assumption of an exponential survival probability. We demonstrate that when the
hazard rate is significantly greater for small individuals than large ones, it is possible for
the optimum strategy to be for an individual to grow to a large size in spite of an arbitrarily
small probabililty of survival to maturity. Numerical simulations indicate how the optimal
allocation strategies depend on the parameter values.

1. Introduction

Dynamic energy budget (DEB) models describe the time history of various state
variables of an individual organism, such as size and resource storage, by describ-
ing the rates at which some limiting resource is assimilated and utilized for growth,
maintenance, and reproduction. The limiting resource is generally called “energy,”
although it may as well be a specific nutrient such as carbon or nitrogen. DEB mod-
els are of two different types, depending on the rule used for allocation of energy.
In a net assimilation model [4,9], a certain fraction κ of assimilated energy is allo-
cated to the combined processes of maintenance and growth, with the remainder
allocated to reproduction. In a net production model [7], maintenance is deducted
from the assimilated energy first, after which a certain fraction α of the surplus
energy is allocated to growth and the remainder to reproduction. Both models are
often modified to allow for energy storage as well. DEB models have been used to
fit experimental data [10,14] and also to consider theoretical issues [7].
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Dynamic energy budget models provide a context to study how an organism
might develop a strategy to optimize its overall fitness, measured, for example, by
its net reproductive output. The idea of maximizing energy allocated to reproduc-
tion was originally developed in [1,8,17]. These problems can often be formulated
as optimal control problems, where the allocation function α, or κ , is the control,
the net reproductive output is the objective function, and the DEB models provide
the dynamics, or state equations. Life history problems for both plants and ani-
mals have been studied in this way ([3,5,6,12,13,15,16,18]), and researchers have
shown that both bang-bang strategies and non-bang-bang strategies are possible,
depending upon the dynamics, the fitness measure, the initial conditions, or the time
over which the system is observed. It is also common in the literature to assume
that the allocation functions are constant, or piecewise constant if an organism’s
life history involves distinct stages in which the values of the allocation parameters
are constant in each stage. (In fact, it is not actually reasonable for the allocation
parameter α to be constant in a net production model, as will be shown in the
analysis below).

DEB models must incorporate assumptions about the probability of survival for
an individual organism. The survival probability is sometimes modeled simply as
an exponential decay function [7]. In other cases, the survival probability is based
on a physiological hazard rate [4,9]. The exponential model is simple and therefore
good for investigations in which the mechanisms of mortality are not of interest, but
such studies cannot yield information regarding the effect of ecological niche on
life history. The physiological hazard rate is appropriate when mortality is caused
primarily by physiological factors; however, this assumption is reasonable only for
a limited number of species. For many species, the principle cause of mortality is
predation. Therefore, our aim in this work is to develop and study DEB models
having mortality relationships with an ecological basis. It will be shown that cer-
tain key results are profoundly influenced by the assumptions made regarding the
mechanism of mortality.

In this investigation, we formulate a life history problem for a general case
where the allocation parameters are allowed to vary with development; however,
we analyze only the relatively simple cases of constant κ , corresponding to an
organism with only one life stage, and piecewise constant α, corresponding to an
organism with distinct juvenile and adult stages. Under these assumptions, the life
history strategy reduces to at most a set of two constant allocation parameter values
and a prescribed condition for the transition between the two stages. In this simple
setting, we can make theoretical predictions concerning the relative biological merit
of certain life history strategies. Our model is composed of three parts: a dynamical
equation for growth (given here as length) coming from the DEB model, a dynam-
ical model for survival probability, and an objective function giving the expected
lifetime reproductive energy use in terms of the length history and survival proba-
bility. The survival probability component incorporates two effects: a constant per
capita loss due to random misfortunes, corresponding to the standard exponential
survival probability, and a density-dependent loss due to predation, with Holling
Type II functional form. The predation rate includes a factor that decreases as the
organism grows too large for some of the potential predators. Given these equations
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and input data regarding the food quality, we determine a life-history strategy that
maximizes expected reproductive energy. In the analysis of the 2-stage net pro-
duction model with a bang-bang (growth-reproduction) strategy, we calculate the
optimum size at maturity and the probability that the organism reaches that size.
We show that classical DEB models with constant per capita hazard rate have the
limitation that they always predict a high probability of reaching maturity (at least
13%) even when the hazard rate is arbitrarily large. This leads us to examine the
model with size-dependent predation in the hope of determining conditions that
predict the possibility of an optimal strategy resulting in a large size at maturity
with a small probability of reaching that size.

2. Mathematical Models

We seek to develop a model to predict the growth and reproduction patterns of a
species based on the characteristics of individual organisms, particularly the strat-
egy used to allocate resources. In anticipation of nondimensionalization, we use
the superscript ∗ to refer to any dimensional quantity. Let g∗ and r∗ represent the
cumulative energy spent by an individual on growth and reproduction. The rates
at which these quantities increase depend on a∗ and m∗, the rates (energy/time) at
which energy is assimilated and used for maintenance, and on the allocation rule
used in the model. Let x∗, S∗, and V ∗ be the length, surface area, and volume of
the organism, and let p be the probability of survival to time t∗.

The energy available to an organism is allocated in some manner to growth,
maintenance, and reproduction. This allocation is described by one of two basic
rules. In a net assimilation model, the organism allocates a fraction κ of its energy
to somatic uses, namely growth and maintenance, and the remainder to reproduc-
tion:

dg∗

dt∗
= κa∗ − m∗,

dr∗

dt∗
= (1 − κ)a∗. (1)

In a net production model, the organism allocates a fraction α of its surplus energy
(assimilation minus maintenance) to growth and the remainder to other uses; hence,

dg∗

dt∗
= α(a∗ − m∗),

dr∗

dt∗
= (1 − α)(a∗ − m∗). (2)

The allocation parameters κ and α could possibly be constant, but they could also
be dependent in a stepwise or continuous manner on the life stage.

Assimilation and Maintenance The size of an individual is given by the length,
surface area, and volume, and the maintenance and assimilation rates are assumed
to be related to these measures of size. We make the following assumptions about
the relationships of these quantities:

1. The assimilation rate is proportional to surface area.
2. The rate at which energy is spent on maintenance is proportional to the organ-

ism’s volume.
3. The animals maintain a constant body shape as they grow.



4 G. Ledder et al.

These assumptions yield the relationships

a∗ = AfS∗, m∗ = CV ∗, S∗ = βx∗2
, V ∗ = γ x∗3

, (3)

where A, C, β, and γ are proportionality constants and f is a dimensionless func-
tion that represents the effect of variable food quality. The parameter A measures
the ideal ratio of assimilation to surface area; thus, 0 < f ≤ 1. The function f is
assumed to be a smooth function of time, possibly constant but not necessarily so.
The specific connection between environmental variables and the function f need
not be specified for our purposes.

Gurney and Nisbet [2] note that assimilation rates have been measured to be pro-
portional to xn, where x is length and n a real number from 1 to 4. These authors
argue that n = 2 and n = 3 are the most plausible; we choose n = 2 because
assimilation proportional to volume implies that energetics imposes no restriction
on maximum size.

Note that there is nothing in the model to make adjustments for insufficient or
intermittent feeding. The model is not designed to apply to cases where an organism
must store energy for future maintenance. We also omit special consideration of
the embryonic stage of an animal’s life cycle. The current model assumes that the
organisms come into being as juveniles of infinitesimal size. This is not a serious
oversimplification in an investigation of phenomena that are accumulated over the
life of an animal.

The structural assumptions (3) combine to yield formulas for assimilation and
maintenance rates in terms of length:

a∗ = βAf x∗2 ≤ βAx∗2
, m∗ = γCx∗3

.

If an organism puts all of its assimilated energy into maintenance and growth, and
its environment is ideal (f = 1), then it will grow asymptotically toward its physio-
logical maximum size L, determined by setting the ideal environment assimilation
equal to the maintenance. We define the scaled length x to be the length relative to
this physiological maximum. Thus,

x = x∗

L
, where L = βA

γC
. (4)

We may therefore rewrite the expressions for assimilation and maintenance as

a∗ = aMf x2, m∗ = aMx3, where aM = βAL2 = γCL3. (5)

Note that aM represents the maximum possible assimilation rate.

The Growth Equation We assume that an individual’s volume at any given time
is proportional to the cumulative amount of energy used for growth:

V ∗ = cg∗.

The growth energy is then given in terms of the length; specifically,

g∗ = gMx3, where gM = γL3

c
. (6)
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Note that gM is the amount of energy that would be invested in growth for an
organism that achieves the physiological maximum. Differentiating with respect to
time, we have

dg∗

dt∗
= 3gMx2 dx

dt∗
.

It is convenient at this point to scale the time by defining a dimensionless time

t = aM

3gM
t∗ = cC

3
t∗. (7)

The basic growth energy equations (1) and (2) reduce to scaled differential equa-
tions for the length x:


dx
dt

= κ(x)f (t) − x (net assimilation)

dx
dt

= α(x)[f (t) − x] (net production)
. (8)

Note that the allocation parameter κ or α is allowed to depend on the size of the
individual. A particular function for one of these allocation parameters represents
a life history strategy. We defer for now the question of what set of possible life
history functions to consider.

Expected Cumulative Energy Allocation We define the scaled reproduction
energy by

r = r∗
gM

= cr∗
γL3 (9)

The reproduction energy equations (1) and (2) become


dr
dt

= 3[1 − κ(x)]f (t)x2 (net assimilation)

dr
dt

= 3[1 − α(x)][f (t)x2 − x3] (net production)
.

Individuals accumulate reproductive energy at the rate dr/dt , but only as long
as they remain alive. The expected cumulative reproduction energy must take into
account the probability of survival. Thus, the expected reproductive energy, relative
to gM , up to time t is given by


R(t) = 3
∫ t

0 [1 − κ(x(η))]f (η) x2(η) p(η) dη (net assimilation)

R(t) = 3
∫ t

0 [1 − α(x(η))][f (η)x2(η) − x3(η)]p(η) dη (net production)
.

(10)

For comparison, we will want to consider also the expected growth energy to time
t , relative to gM , as given by


G(t) = 3
∫ t

0 [κ(x(η))f (η)x2(η) − x3(η)]p(η) dη (net assimilation)

G(t) = 3
∫ t

0 α(x(η)) [f (η)x2(η) − x3(η)]p(η) dη (net production)
. (11)
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Survival Probability Typically, the survival probability in a dynamic energy bud-
get model is taken to be a decaying exponential function. This corresponds to the
assumption that the hazard rate is independent of the state of the individual. How-
ever, the principal hazard for most creatures is predation, and the risk of predation
is dependent on the size of the organism. In order to use a basic predator-prey
model for the survival probability p, we identify p with the population density P ,
relative to its maximum. To make this identification we must assume that only one
generation of the species is present at any given time, and that the entire generation
is of uniform size and age. While unrealistic for many species, this assumption
serves the present investigation by yielding a tractable mathematical model with a
rich structure.

To formulate a dynamical equation for the survival probability p, we assume
that the per capita death rate has two contributions, a constant loss b due to random
misfortunes, and a density-dependent loss due to predation, with a Holling Type II
functional form. Thus we assume

dp

dt
= −bp − φ(x(t))

νp

ν + p
, p(0) = 1, (12)

where φ(x) measures the sensitivity of the predation rate to prey size, and the
constant ν measures the deviation of the functional response from linear.

To determine a relation for φ(x) we note that typical organisms live in a com-
plex environment where they are subject to predation from a variety of predators,
and each predator species has a particular range of preferred prey sizes. Generally,
we expect the risk of predation to be a decreasing function of size. One simple
model of size-dependent predation is the function

φ(x) = ρH

H + x
. (13)

Here, ρ is the predation rate for newborn organisms and H is the prey size for
which the predation rate is half-maximum, much the same as in the density-depen-
dent Holling Type II response. The survival function p can only be determined in
conjunction with the growth curve, but we can at least state that its graph will be
concave up (a Type 3 survivorship curve [11,13]).

We note that there could perhaps be other mechanisms whereby the hazard rate
would be size-dependent; here we consider only mechanisms by which the hazard
rate decreases as the organism grows.

The Life History Problems The model given by (8) and (10–13) determines the
time-dependent size, survival probability, and expected energy allocations for a
given allocation rule κ or α. Our interest is in comparing the results of different
allocations, each of which can be thought of as a strategy by which an organism’s
life history is determined. We assume that natural selection favors organisms whose
life history function is tuned to some average or typical set of circumstances. The
most general life history problem, formulated in terms of the net assimilation or net
production model above, is to determine an allocation function, or strategy, either
κ = κ(x) or α = α(x), that maximizes the fitness of the organism. It is assumed
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that the dynamics governing length and survival probability are given, with specific
forms for the size-dependent predation rate and the food quality f (t).

We take the total lifetime reproductive energy allocation as a measure of repro-
ductive output. The manner in which the reproductive energy is spent is assumed
to be unimportant. We therefore count stored energy as energy ultimately spent
on reproduction, and we make no distinction between energy used to develop and
maintain reproductive maturity, energy used to attract mates, energy used directly
for reproduction, and energy used to care for the young. A more accurate measure
of reproductive output might be the expected number of eggs, but the details of egg
production from reproductive energy are an unnecessary complication. Since the
number of eggs increases with the amount of reproductive energy, a strategy that
yields an optimal amount of reproductive energy also yields the optimal number
of eggs. Stated differently, our model does not determine the absolute fitness of a
strategy, but it does serve to determine the relative fitness of a set of competing
strategies.

In specific mathematical terms, the life history problems are formulated as
follows:

Problem 1 (NetAssimilation). Given parameters b and ν, functionsf (t) andφ(x),
and a set of possible life history functions %κ , find κ(x) ∈ %κ to maximize F =
R(∞) as given by (10), with x given by (9) and p by (12).

Problem 2 (Net Production). Given parameters b and ν, functions f (t) and φ(x),
and a set of possible life history functions %α , find α(x) ∈ %α to maximize F =
R(∞) as given by (10), with x given by (9) and p by (12).

Both problems, interpreted in their general sense, can be formulated as optimal
control problems for the allocation functions.

Sufficient Conditions for Food Quality The model is not designed to deal with
the problem of insufficient nutrition. It is therefore necessary to state some condition
on the food quality function f to guarantee that assimilation always be sufficient
to meet maintenance needs. For the case of the net assimilation model, the require-
ment is κ(x(t))f (t) > x(t) ∀ t ≥ 0. This is equivalent to the requirement w(t) > 0
∀ t ≥ 0, where w is defined by

w(t) = etκ(x(t))f (t) − etx(t).

By rearranging (8) as [etx(t)]′ = etκ(x(t))f (t), we have

w′(t) = et [κ(x(t)f (t)]′.

Now suppose there is some time T > 0 such that κ(x(t)) ≡ κ∞ and f (t) ≡ f∞
for t > T . Then w′ = 0 for t > T . We expect κ to be nonincreasing, indicating
that an organism does not decrease its allocation to reproduction as it matures and
reproduces, and we assume that the food quality is also nonincreasing, as this case
is the one where the risk of insufficient nutrition is greatest. Under these assump-
tions, w is also nonincreasing; hence the minimum value of w occurs at time T
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when the minimum value of food quality is reached. Thus, a sufficient condition
for food quality is ∫ T

0
κ(x(τ )) e(T−τ) f (τ ) dτ < κ∞f∞.

For the common case where κ is taken to be constant, the condition reduces to∫ T

0
e(T−τ) f (τ ) dτ < f∞. (14)

In both cases, the integral on the left is an increasing function of T , so the suf-
ficiency condition can be thought of as a requirement that the food quality be
constant beyond a sufficiently early time T . The similar sufficiency condition for
food quality can be obtained for the net production model.

3. Analysis of the Net Assimilation Model

The general life history problem for the net assimilation model, as stated in Problem
1, is a difficult problem. As a first attempt to explore the effects of size-dependent
predation on the solution of an optimal life history problem, we consider only the
case in which the allocation parameter κ must be constant. Restricting κ to a con-
stant simplifies the growth equation (8) to a point where it can be solved explicitly.
We obtain the following problem.

Problem 3. Given parameters b and ν and functions f (t) and φ(x), find κ ∈ (0, 1)
to maximize the fitness integral

F(κ) = 3(1 − κ)

∫ ∞

0
f (t) x2(t) p(t) dt, (15)

where

x(t) = κe−t

∫ t

0
eη f (η) dη, (16)

and p is given by (12).

Problem 3 can be solved numerically for any input data, given that the food
quality condition (14) is met. For simplicity, we consider only the case where φ is
given by (13), prey densities are small (ν+p ≈ ν), and the environment is constant
(f = f∞ ∈ (0, 1]). The last of these assumptions reduces the length equation to
the von Bertalanffy equation

x = f∞κ(1 − e−t ). (17)

The survival probability can be found in terms of size from

dp

dx
= −

(
b + ρH

H + x

)
p

f∞κ − x
, p(0) = 1;
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thus

p(x) =
(

1 − x

f∞κ

)b+ ρH
H+f∞κ (

1 + x

H

) −ρH
H+f∞κ

. (18)

The integrals for G and R are conveniently rewritten using the substitution y =
x(η)/f∞κ:

G(t) = 3f 3
∞κ3

∫ 1−e−t

0
y2 (1 − y)

b+ ρ
1+qκ (1 + qκy)

− ρ
1+qκ dy (19)

and

R(t) = 3f 3
∞κ2(1 − κ)

∫ 1−e−t

0
y2 (1 − y)

b+ ρ
1+qκ

−1
(1 + qκy)

− ρ
1+qκ dy, (20)

where we have introduced the symbol q = f∞/H for convenience. The optimal
value of κ is that which maximizes

F(κ) = 3f 3
∞κ2(1 − κ)

∫ 1

0
y2 (1 − y)

b+ ρ
1+qκ

−1
(1 + qκy)

− ρ
1+qκ dy,

q = f∞
H

. (21)

For the special case in which the survival probability is taken to be exponential
(ρ = 0), the problem reduces to a calculus problem, with the solution κ = 2/3.
This result has been previously reported by Gurney and Nisbet [2]. Other cases
must be solved numerically. Note first that F evaluates to 0 at the points κ = 0
and κ = 1 and is positive for 0 < κ < 1; hence, there is a value 0 < κ < 1 that
maximizes F . Since the derivative of F(κ) is complicated, it is most convenient
to maximize F using a numerical line search method, such as the golden section
search. Some care must be taken to evaluate the integral because of the singularity
in the integrand at y = 1.

4. Analysis of the Net Production Model

In the net assimilation model, the allocation parameter κ can be taken as a constant
for the entire life of an organism. The same can not be said of the allocation param-
eter α of the net production model [2]. Inherent in the net production model is the
requirement that there be a maximum size X for which α = 0. Thus, the simplest
reasonable version of the net production model is that in which α is taken to be
constant up to a size X and zero thereafter. In particular, we assume the well-known
“bang-bang” strategy, in which the organism has a juvenile phase in which all net
production is allocated to growth (α = 1) followed by an adult phase in which all
net production is allocated to reproduction.
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Specifically, we assume that there is a fixed mature size x = X at which the
organism will make the transition from juvenile to adult. Then

α(x) =
{

1, x < X

0, x ≥ X
. (22)

The life history problem is now the problem of finding that value of X, given the
other parameter values, that optimizes the fitness function.

Note that the bang-bang model is the simplest net production model, but could
also be obtained by appropriate assumptions in the net assimilation case. One would
assume that there is a juvenile stage in which κ = 1 followed by an adult stage
in which κ is taken to be just enough to meet maintenance needs. The bang-bang
assumption makes the model significantly more tractable by establishing a fixed
size for adult organisms. In the analysis that follows, two new quantities play a
particularly important part: τ(X), the time at which the transition from juvenile to
adult is made, and M(X), the probability of survival to the transition point.

The juvenile stage is marked by growth with no reproduction. The absence of
reproduction means that nothing in the juvenile stage is relevant to the life his-
tory problem except the quantities τ(X) and M(X). With α constant, the growth
equation is linear and can therefore be solved, yielding the solution

x = e−t

∫ t

0
eη f (η) dη; (23)

thus, the transition time τ is given implicitly as a function of X by

X = e−τ

∫ τ

0
eη f (η) dη. (24)

In general, the survival equation (12) is nonlinear and must be solved numerically
to determine M(X).

For the special case of a bang-bang life history, the fitness function is given by

F(X) = 3
∫ ∞

τ(X)

[f (t)X2 − X3]p(t) dt.

The problem is simplified somewhat by a change of variables. Let u = t − τ be the
time following the transition and let s(u) = p(τ +u) be the probability of survival
for time u after transition. This yields the bang-bang version of Problem 2:

Problem 4. Given parameters b and ν and functions f (t) andφ(x), find the optimal
size X1 ∈ (0, 1) that maximizes the fitness integral

F(X) = 3
∫ ∞

0
[f (τ + u)X2 − X3] s(u) du, (25)

where τ is given by (24) and s by

1

s

ds

du
= −b − νφ(X)

ν + s
, s(0) = M(X), (26)

where M(X) = p(τ(X)) is determined by (12).



Dynamic energy budget models with size-dependent hazard rates 11

Observe that s depends implicitly on X, but we do not represent this in our
notation.

We concentrate in the sequel on a special case of Problem 4, characterized by
three additional assumptions: (a) the function φ(x) is given by (13), (b) the popu-
lation of adults is small, and thus ν +M ≈ ν, and (c) full-grown individuals live in
a constant environment, and thus f (t) = f∞ for t > τ . The last two assumptions
are less restrictive than the corresponding assumptions in Problem 3 for the net
assimilation model because they are applied only after growth is complete.

Under these assumptions, the survival equation is easily integrated, with the
result

s(u) = M(X)e−λ(X)u,where λ(X) = b + ρH

H + X
. (27)

The fitness integral can also be computed explicitly, resulting in the following
problem:

Problem 5. Given ρ, b, H , ν, f∞, find the optimal size X1 ∈ (0, 1) that maximizes
the fitness function

F(X) = 3(f∞X2 − X3)λ−1(X)M(X), (28)

where

λ−1(X) = H + X

(ρ + b)H + bX
, M(X) = p(τ(X)).

Application of elementary calculus techniques to Problem 5 reduces the deter-
mination of the optimal size X1 to an algebra problem. (See the Appendix for
details.) We have the following result.

Proposition 1. Problem 5 has a unique solution X1 in the interval (0, f∞); the
solution is the root of the polynomial

Q(X) = b(b + 3)X3 + (2bσ + 4σ + 2bH − 2f∞b)X2

+(σ 2 + 3Hσ − 3f∞σ − f∞bH)X − 2f∞Hσ, (29)

where σ = (ρ + b)H .

At this point, we consider the special case in which the food availability is con-
stant and the hazard rate is size-independent (ρ = 0). In this case, the growth curve
(23) simplifies to

x = f (1 − e−t )

and the survival probability is

M = (1 − X/f )b.

The optimum value of X is determined directly from

F(X) = 3

bf b
X2(f − X)1+b



12 G. Ledder et al.

to be

X = 2f

3 + b
;

thus, the probability of reaching mature size is

M =
(

1 + b

3 + b

)b

.

Application of L’Hôpital’s Rule yields the following result.

Proposition 2. If food availability is constant and the hazard rate is size-indepen-
dent, then the probability of survival to the end of the juvenile stage is in the interval
e−2 < M ≤ 1. In particular, increasing the hazard rate can only reduce the survival
probability to e−2.

Proposition 2 poses an interesting question, that of whether the more general
model of Problem 5 always places a positive lower bound on the probability of
survival to full growth. Since an arbitrarily small survivorship probability does not
appear to occur when the optimal size is arbitrarily small, we focus our attention
on trying to find the possibility of an arbitrarily small survivorship probability with
an optimal size that is not arbitrarily small.

The relationship between the survival probability and mature size for Problem
5 is given in the following proposition, which is proved in the Appendix. The key
result is that the survival probability for the general case must be of the same order
of magnitude as the survival probability for the case b = 0, ν + p ≈ ν.

Proposition 3. Let M0 be defined by

M0(X) = exp

(
−
∫ τ(X)

0

ρH dt

H + x(t)

)
. (30)

Then

e−bτ(X) M0(X) < M(X) < e1/ν M0(X).

We now attempt to find conditions under which M0 → 0 without X → 0. We
have M0 arbitrarily small in the limit ρ → ∞. However, in this limit (29) becomes

Q(X) ∼ b(b + 3)X3 + (2b + 4)ρHX2 + ρ2H 2X − 2f∞ρH 2;
thus, X ∼ 2f∞/ρ as ρ → ∞, with all other parameters fixed. Instead suppose ρH
is fixed as ρ → ∞. This corresponds to the case where the density of predators is
large only for small prey.

The following result is proved in the Appendix.

Proposition 4. Suppose ρH < 3f∞ is fixed. Then the optimal mature size X1 of
Problem 5 is bounded away from zero as ρ → ∞, while the probability M(X1) of
an individual reaching maturity is not.
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5. Results and Discussion

In the single-stage net assimilation model, the optimal value for the allocation
parameter κ is generally in the range 0.66 < κ < 0.8, with little sensitivity to
most of the parameters in the model. Thus, the model predicts that a little over
two thirds of the organism’s energy output goes to growth, regardless of varia-
tions in physiological parameters and environmental conditions. Figure 1 shows
the expected growth and reproduction energy history for physiologically similar
organisms adapted to two different environments. Each environment features ade-
quate high-quality food (f = 1) and no high-density saturation (ν + p ≈ ν). The
plot on the left is for an organism that has adapted to an environment in which hazard
rates are independent of size, with ρ = 4. The plot on the right is for an organism
that has adapted to an environment in which hazard rates are highly dependent on
size, with ρ = 20 and H = 0.05. This means that very small individuals in the
size-dependent environment are five times as vulnerable to predation as individuals
in the size-independent environment, but large individuals are approximately one
quarter as vulnerable. The values of ρ were chosen so that the total expected energy
output of an individual is about the same for both cases (0.016).

The organism that has adapted to the size-dependent environment has an alloca-
tion parameter of κ = 0.83, as compared to the value of 2/3 for the size-independent
environment.Averaged over an expected lifespan, individuals in the size-dependent
environment are able to allocate about 36% of their energy to reproduction, while
those in the size-independent environment are able to allocate about 47% of their
energy to reproduction. These results are in qualitative agreement with the expec-
tations of intuition. Suppose a species adapted to a size-independent environment
is established in a size-dependent environment. Natural selection will begin to act
to favor individuals that allocate a larger share of energy to growth, because these
individuals spend less of their lives in the stage where they are the most vulnerable.
The cost of this change is that more of an organism’s lifetime energy accumulation
must be spent on growth, with the fraction spent on reproduction correspondingly
less. The two environments of Figure 1 are equally hospitable in the sense that the
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Fig. 1. Expected growth (dashed) and reproduction (solid) energy for the net assimilation
model, with f = 1, ν + p ≈ ν. The plot on the left has b = 4 and ρ = 0, while the plot on
the right has b = 0, ρ = 20, and H = 0.05.
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expected lifetime energy use is the same for individuals adapted to each environ-
ment. However, the size-dependent environment is more hostile in the sense that the
organisms adapted to it must spend a larger fraction of their energy accumulation
on uses not directly related to reproduction.

In the two-stage net production model, the optimal mature size depends sig-
nificantly on environmental factors such as food availability and predator density.
Note that this does not necessarily imply that organisms are capable of adjusting
their mature length to current environmental conditions. The model indicates only
the parameter values an organism will have if natural selection acts to tune the
organism to some typical or average environment. The organisms may perform in
a way that is considerably suboptimal when the environment differs significantly
from that to which the organism is tuned. If the new environmental conditions are
maintained for sufficiently many generations, we should expect natural selection
to retune the organism to the new environment.

Of particular interest is the sensitivity of the optimal mature length and prob-
ability of reaching maturity to size-dependence in hazard rates, as described in
Proposition 4. The results are illustrated in Figure 2. The curves illustrate the effect
of predator bias toward smaller prey, given constant values of ρH . The parameter
ρH is approximately a measure of the density of predators capable of preying on
larger individuals. This correspondence depends mathematically on the approxima-
tion H +X ≈ X, so it becomes more accurate when the predator bias is high. The
reason for keeping ρH rather than ρ constant in these plots is to demonstrate the
possibility of vanishingly-small survival probability coupled with modest mature
size, a combination that is typical in wild populations. Note that when the level of
predator activity is sufficiently low (ρH = 1), the effect of predator bias toward
smaller prey on the mature size of the prey is minimal, but the effect on the prob-
ability of survival to maturity is substantial. When the level of predator activity is
above the threshold ρH = 3, the optimal size decreases toward zero with increas-
ing predator bias, and the probability of reaching maturity also decreases, although
not as rapidly as when the predator level is below the threshold.
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Fig. 2. Optimal mature length X and probability M of reaching optimal size for the net
production model, with f∞ = 1, b = 0, and ν + p ≈ ν
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Fig. 3. Expected growth (dashed) and reproduction (solid) energy for the net production
model, with f = 1, ν + p ≈ ν. The plot on the left has b = 4 and ρ = 0, while the plot on
the right has b = 0, ρ = 20, and H = 0.05.

The expected growth and reproduction curves for the net production model,
using the same two environments as in Figure 1, appears in Figure 3. As in the
1-stage net assimilation case, the 2-stage net production model indicates significant
differences in the organisms’ response to environmental conditions. Compared to
the environment with size-independent predation, the environment with size-depen-
dent predation leads to a longer growth period, a larger mature size, and a smaller
overall allocation of energy to reproduction. The trade-offs are the same as in the
net assimilation model. Given a predator size bias, it makes sense to change from
growth to reproduction at a later time, giving up a small amount of reproduction in
the short term in exchange for the promise of a longer reproductive life for those
individuals that do reach maturity.

6. Conclusion

The standard assumption of a size-independent hazard rate leads in the case of a
2-stage bang-bang allocation strategy to the result that the probability of reaching
maturity is greater than 13%, a value that is far too high for most ectotherms in
wild populations. One might expect that raising the death rate uniformly for indi-
viduals of all sizes would lead to both a lower mature size and a lower probability
of survival to maturity, but this is not the case; the model predicts instead that the
response to a higher death rate is limited to lower mature size. The organisms die
quickly in the more dangerous environment, but they achieve full growth even more
quickly because they grow very little before devoting themselves to reproduction.
For many investigations using dynamic energy budget models, this error is likely
to be unimportant. For those investigations in which information about the size
distribution of the population is important, a size-dependent hazard rate provides
one mechanism for obtaining the more realistic outcome of low probability of sur-
vival to maturity. The model must include the assumption that the hazard rate is
a strongly decreasing function of size, corresponding to an environment in which
the primary cause of mortality is predation and in which the danger from predators
decreases as an organism becomes more capable of defending itself.



16 G. Ledder et al.

The effect of predator bias toward small prey depends considerably on the
overall level ρ of predator activity, as illustrated for a specific case in Figure 2
and demonstrated in the general case by Proposition 3. At lower levels of predator
activity, the optimal mature length is not very sensitive to H . The sensitivity of X
to H increases as the approximate predator activity level on adults (ρH ) increases,
with the optimal length vanishing as H → 0 if ρH ≥ 3f∞.

7. Appendix

Proposition 1

Note that F(X) = 0 for both X = 0 and X = f∞, while F > 0 for 0 < X < f∞
and F < 0 for X > f∞; hence, the global maximizer of F(X) must be a critical
point in the interval 0 < X < f∞. The differential equation for p can be written
in terms of x as

1

p

dp

dx
= − 1

f∞ − X

[
b + νφ(X)

ν + p

]
, p(0) = 1, p(X) = M.

Thus, dM/dX = dp/dx(X). With ν + M ≈ ν, we obtain

1

M

dM

dX
= −b + φ(X)

f∞ − X
= − λ

f∞ − X
.

By logarithmic differentiation of (27), we obtain the result

∂F

∂X
= −Q(X)F(X)

X(f∞ − X)(H + X)(σ + bX)
,

where Q is given by (28). Thus, the global maximizer of F must be a root of Q in
the interval (0, f∞).

Now suppose Q has more than one root in (0, f∞). Then there must be two
points in the interval at which Q′ = 0 and one point at which Q′′ = 0. Now
Q′(f∞) > 0 and Q′′(f∞) > 0, so it must be that Q′′(0) < 0 and Q′(0) > 0. How-
ever,Q′′(0) < 0 forcesσ+H < f∞; whenceQ′(0) < 0. This proves Proposition 1.

Proposition 3

We define three problems related to the problem of finding M:

dp0

dt
= − ρHp0

H + x(t)
, p0(0) = 1, M0 = p0(τ ).

dpL

dt
= −bpL − ρHpL

H + x(t)
, pL(0) = 1, ML = pL(τ).

dpU

dt
= − ρHpU

H + x(t)

ν

ν + pU

, pU(0) = 1, MU = pU(τ).

Note that the latter two problems are related to the actual problem bypL < p < pU .
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The three comparison problems can all be solved to yield either explicit or
implicit results for the corresponding values of M .

M0(X) = exp

(
−
∫ τ(X)

0

ρH dt

H + x(t)

)
,

ML(X) = e−bτ(X) M0(X),

and

MU(X) = e−MU/ν e1/ν M0(X) < e1/ν M0(X).

Hence,

e−bτ(X) M0(X) ≤ M(X) < e1/ν M0(X).

Proposition 4

Suppose ρH = µ < 3f∞. Then σ → µ and H → 0 as ρ → ∞. In this limit, the
equation for X reduces to

XQ0(X) = 0, where

Q0(X) = b(b + 3)X2 + (4µ + 2bµ − 2f∞b)X + µ(µ − 3f∞).

Now Q0(f∞) > 0 and Q0(0) < 0. Thus, Q0 must have a root X1 such that
0 < X1 < f∞. This root is also a root of Q as ρ → ∞, so it must be the unique
solution for the optimal size. Hence, the hypotheses are sufficient to guarantee that
X1 does not vanish as ρ → ∞.

Now we consider M0 as defined in Proposition 3. Using dx = (f − x) dt and
µ = ρH , M0 is given by

lnM0 = −
∫ X

0

ρµdx

[f (t (x)) − x](µ + ρx)

< −
∫ X

0

ρµdx

(1 − x)(µ + ρx)
= − ρµ

ρ + µ
ln

µ + ρX

µ(1 − X)
.

Thus, lnM0 is unbounded below as ρ → ∞, provided X is bounded away from 0.
The result follows immediately.
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