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a b s t r a c t

The goal of this work is to formulate a general Holling-type functional, or behavioral, response for

continuous physiologically structured populations, where both the predator and the prey have

physiological densities and certain rules apply to their interactions. The physiological variable can be,

for example, a development stage, weight, age, or a characteristic length. The model leads to a Fredholm

integral equation for the functional response, and, when inserted into population balance laws, it

produces a coupled system of partial differential–integral equations for the two species, with a nonlocal

integral term that arises from rules of interaction in the functional response. The general model is,

typically, analytically intractable, but specialization to a structured prey–unstructured predator model

leads to some analytic results that reveal interesting and unexpected dynamics caused by the presence

of size-dependent handling times in the functional response. In this case, steady-states are shown to

exist over long times, similar to the stable age-structure solutions for the McKendick–von Foerster

model with exponential growth rates determined by the Euler–Lotka equation. But, for type II

responses, there are early transient oscillations in the number of births that bifurcate in a few

generations into either the decaying or growing steady-state. The bifurcation parameter is the initial

level of prey. This special case is applied to a problem of the biological control of a structured pest

population (e.g., aphids) by a predator (e.g., lady beetles).

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is probably not a more widely known result in
population ecology than the Holling type II functional response,
or disk equation (Holling, 1959), which measures a predator’s per
capita feeding rate R (prey per time, per predator) as a function of
prey abundance N (prey per area). The response has the form

R ¼
aN

1þ ahN
, (1)

where a is the encounter rate and h is the time it takes a predator
to handle a single prey. This follows from the idea that the total
time breaks into mutually exclusive times: time to hunt and time
to handle. Handling prey itself can be broken into biting, chewing,
digesting, etc. (Spalinger and Hobbs, 1992). We do not include this
detail in our model, but we do take into consideration that the
handling time depends upon both the size of the prey and the size
of the predator. Other modifications and extensions include
multiple prey, clumped prey (Costner and DeAngelis, 1999),
predator interference (Beddington, 1975; DeAngelis et al., 1975;
Skalski and Gilliam, 2001), predator–prey ratio dependence and
ll rights reserved.
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other spatial effects. In a different direction, functional responses
may also depend upon environmental variables. For example,
daily temperature variations may alter searching times of
predators and the activity times of prey, offsetting the interaction
opportunities (e.g., Logan et al., 2006; Logan and Wolesensky,
2007a, b), or changes in temperature may put physiological
constraints on the predator (Vasseur and McCann, 2005; Wole-
sensky and Logan, 2007).

In this paper we focus upon the form that the Holling type II
response takes in continuous time, age, and physiologically
structured predator–prey models. For example, in a size-struc-
tured model we must deal with what size of predator consume
what size of prey. This is a complex issue and there does not seem
to be a general discussion or derivation in the literature; rather,
only special cases are studied. In this paper we offer a top-down,
comprehensive model of these interactions in the form of a
coupled set of reaction–advection partial differential–integral
equations for the predator and prey densities (e.g., size densities).
The Holling response becomes a nonlocal (integral) term repre-
senting a source or sink in the equations. In the general case these
equations must be resolved numerically. However, in certain cases
the equations can be specialized to simpler systems where
analytic progress can be made. We consider one such example
where we ask if prey populations can be controlled by the
introduction of a uniform predator population, such a case might

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
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Table 1
Quantities used in the model of an unstructured predator with discretely

structured prey.

Quantity Definition Dimensions

Ni Density of ith sized prey Prey � area�1

Si Predator search rate for ith prey Area � time�1
� predator�1

Ts Predator search time Time

Th Predator’s total handling time Time

T Predator’s total available time Time

di Detectability of ith sized prey Dimensionless

hi Predator handling time for ith sized prey Time � predator � prey�1

Ri Predation rate on the ith sized prey Prey � time�1
� predator�1

ri Number of attacks on ith sized prey Prey � predator�1

ai Encounter rate of the ith sized prey Area � time�1
� predator�1

ci Yield from attacks on ith sized prey Predator � prey�1
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occur in a greenhouse with aphid–lady beetle populations. We
point out how other models in the literature arise as a special case
of the general equations. The framework we develop leads to
many problems with questions of well-posedness that may be of
interest to mathematical analysts.

Following the classic works of Lotka, Sharp, and McKendrick in
the early 1900s on linear, age-structured models, there have been
a large number of papers that address age- and physiologically
structured models. General works are, for example, by Metz and
Diekmann (1986), Metz et al. (1988), de Roos (1997), Tuljapurkar
and Caswell (1997), and Cushing (1998). The latter contains
extensive bibliographies on both discrete and continuous models,
and it provides an entry point into the literature. Key early papers
in this progression are the works by Auslander et al. (1974), who
derive a general physiological model and apply it to a host–par-
asite system, and Gurtin and MacCamy (1974, 1979a, b), who
study age-dependent predation. Additional cases where the
predator is either indiscriminate or is egg-eating have also been
discussed (Gurtin and Levine, 1979; Levine, 1981; Thompson et al.,
1982; Coleman and Frauenthal, 1983; Saleem, 1983, 1984). Most
authors make simplifying assumptions to make the equations
tractable, for example, assuming only one of the trophic popula-
tions is structured, or the predator only consumes the eggs of the
prey. Some models nicely reduce to systems of ordinary
differential equations and the questions of stability can be
addressed (e.g., Hastings, 1983). Structured models involving
differential-delay equations have been developed by Nisbet
(1997); see also the references therein.

The plan of the paper is as follows. To set the stage and
notation for the continuous case, in Section 2 we give a brief
derivation of the differential equation model for multiple
predators consuming discrete sets of prey classes (e.g., size
classes). In Section 3 we show how the analysis extends to
continuously structured populations of both predators and
prey. Of particular note, we formulate and solve a Fredholm
integral equation for the functional response. The introduction
of the attack rate in the population model leads to a set of coupled
partial differential–integral equations for the two population
densities. In Sections 4 and 5 we specialize the model to a
case where the prey is structured, but the predator population
is unstructured. We address the question of determining the
threshold value of the prey population for which the prey
(a solution to a nonlinear, partial differential–integral equation)
either grows exponentially or decays to zero (extinction).
Depending upon this parameter, birth rates for the prey
oscillate for a few generations before settling to a steady-
state. One could equally well consider the initial population of
predators as the bifurcation parameter. An application of these
ideas gives conditions on the biological control of a pest
population.

As a final introductory remark, we explain how we interpret
the effects of predation and consumption upon the predator.
Typically, for unstructured predators, consumption of prey
increases the numbers of individual predators. For structured
populations, however, dealing with numbers of individuals does
not treat the energetics correctly. Predators in a certain size class
do not increase in numbers upon consumption. They may increase
their mass, or, indirectly, they may increase their fecundity and
add to the number or vitality of new births. Or, for example,
increased consumption by some insects may increase their
development rates, or their speed through instars. Therefore,
one correct way to model structured predators, and prey as well, is
to use biomass in place of numbers of individuals. Another
interpretation, and the one we take here, is that the payoff for the
predator is a decreased mortality rate; that is, consumption of
resources reduces natural deaths.
2. Differential equation models

We first review the case where prey of discrete sizes are
randomly dispersed in a fixed region of area A. A predator enters
the region and encounters prey at a rate depending upon prey
size. We follow this with a derivation of the Holling type II
response in the case where several predators enter the patch,
searching without interference.

2.1. Single predator

Assume a single predator that enters a patch of area A and
encounters prey of n different sizes with densities N1; . . . ;Nn.
Instead of size, we could equally consider any physiological
variable, e.g., development. For easy reference, Table 1 presents
various quantities, their definitions, and their dimensions.

For a single predator, the number of attacks on the ith sized
prey in time T is

ri ¼ diSiTsNi; i ¼ 1;2; . . . ;n, (2)

where di, the detectability, is the probability of the predator
detecting the ith sized prey, Si is the rate that the predator
searches for the ith sized prey, and Ts is the time that the
predator spends searching. We define the encounter rate of the
predator with the ith sized prey by

ai ¼ diSi.

An important notational choice involves how we denote whether
there is an interaction between the predator and the ith sized
prey. A separate symbol could be chosen to carry this information;
rather, to maintain simple notation, we choose the encounter rate
ai to carry this information. That is, ai ¼ 0 if the predator does not
attack the ith sized prey, and ai40 if the predator attacks the ith
prey.

The total time T available to the predator is the sum of its
search time and the total time required to handle all the prey it
attacks. The time to handle the jth sized prey is hjrj, where hj is the
per prey handling time. Therefore,

T ¼ Ts þ Th ¼ Ts þ
Xn

j¼1

hjrj.

Substituting into (2), dividing by T, and defining Ri ¼ ri=T as the
predation rate, we have

Ri ¼ ai 1�
Xn

j¼1

hjRj

0
@

1
ANi. (3)
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Eq. (3) form a system of n linear equations for the predation rates
Ri. Writing this system in standard form yields

aiNi

X
joi

hjRj þ ð1þ aiNihiÞRi þ aiNi

X
j4i

hjRj ¼ aiNi; i ¼ 1; . . . ;n.

(4)

For n ¼ 3, for example,

1þ a1N1h1 a1N1h2 a1N1h3

a2N2h1 1þ a2N2h2 a2N2h3

a3N3h1 a3N3h2 1þ a3N3h3

0
B@

1
CA

R1

R2

R3

0
B@

1
CA ¼

a1N1

a2N2

a3N3

0
B@

1
CA.

It is straightforward to show (e.g., by Cramer’s rule) the solution to
(4) is given by

Ri ¼
aiNi

1þ
Pn

j¼1ajhjNj

; i ¼ 1; . . . ;n. (5)

Eqs. (5) define the predation rates of a single predator on n prey
classes with densities Ni. These equations represent the Holling

type II response for n different size classes of prey.

2.2. Multiple-sized predators

For multiple-sized predators we must account for who
consumes whom. Suppose, as in the previous subsection, that
there are n different prey sizes with densities N1; . . . ;Nn; and there
are m different predator types (sizes, development stages, etc.)
with populations P1; . . . ; Pm. For example, Fig. 1 depicts the
interactions with n ¼ 3 and m ¼ 2. The single index i on di, Si, ai,
hi, and Ri must now be replaced by a dual set of indices ik (i the
prey index and k the predator index). Then, dik denotes the
detectability of the ith sized prey by the kth sized predator, and
aik ¼ dikSik is the encounter rate of the ith sized prey by the kth
sized predator. The zero encounter rates, e.g., a31, are not indicated
in the schematic. Similarly, hik is the time it takes for the kth sized
predator to handle the ith sized prey. It follows immediately from
(5) that the per predator attack rate on the ith sized prey is

Rik ¼
aikNi

1þ
Pn

j¼1ajkhjkNj

; i; k fixed.

Therefore, the net attack rate on the ith sized prey by all predators
is

Ri ¼
Xm

k¼1

aikNi

1þ
Pn

j¼1ajkhjkNj

.

This is the Holling type II response for multiple prey and multiple
predators. In this case, the population dynamics are given by

dNi

dt
¼ GiðNiÞ �

Xm

k¼1

aikNi

1þ
Pn

j¼1ajkhjkNj

Pk; i ¼ 1; . . . ;n,

dPk

dt
¼ �MkðPkÞ þ

Xn

i¼1

cikaikNi

1þ
Pn

j¼1ajkhjkNj

Pk; k ¼ 1; . . . ;m,
Fig. 1. Diagram showing the predator–prey interactions between two predator

classes and three prey size classes. The nonzero aik denote the encounter rates

between the kth sized predator and the ith sized prey.
where cik are the conversion efficiencies, Gi is the growth rate of
prey i, and Mk is the mortality of predator k,

To keep track of the interactions we can store the encounter
rates in a matrix E ¼ ðaikÞ. For example, the interactions shown in
Fig. 1 lead to an encounter matrix of the form

E ¼

a11 0

a21 a22

0 a32

0
B@

1
CA.
3. Continuously structured model

Now we develop the general continuous model, starting with
the form of the functional response. Then we use the functional
response to derive the population equations for the prey and the
predator. Key ideas in the model are: handling times for each
predator must be integrated over the range of prey sizes that they
consume; predation for each prey size must be integrated over a
range of predator sizes; and, predation for each predator must be
integrated over a range of prey sizes.
3.1. The functional response

Let x and y denote the prey and predator structured variables,
respectively, with 0pxpX and 0pypY . The structured variables
may represent size, age, mass, development level, or any other
structured quantity. Generically, we refer to the variables as size
variables. By uðx; tÞ and pðy; tÞ, in dimensions of individuals per
size, per unit area, we denote the densities of the two populations.
That is, uðx; tÞDx and pðy; tÞDy measure the approximate prey and
predator populations at time t in the size intervals ½x; xþ Dx� and
½y; yþDy�, respectively, per unit area. Fig. 2 depicts typical
densities. Next, we let the functions dðx; yÞ, Sðx; yÞ, hðx; yÞ, and
aðx; yÞ ¼ dðx; yÞSðx; yÞ denote the detectibility, search speed,
handling time, and encounter rate of a predator of size y

interacting with prey of size x. As in the discrete case, aðx; yÞ ¼ 0
if there is no interaction between prey of size x and predators of
size y; thus, aðx; yÞ carries the interaction information. At time t,
for a single predator of size y entering the patch (so, y is fixed), the
number of attacks on the prey in size class ½x; xþ Dx� is given by

rðx; y; tÞDx ¼ dðx; yÞSðx; yÞTsuðx; tÞDx ¼ aðx; yÞTsuðx; tÞDx.

The quantity r, an attack density, is measured in prey per size, per
predator. The total time T available for the predator’s search must
be divided into its search time and the time it takes to handle all
the prey it attacks; that is, Ts ¼ T � Th. The total handling time is

Th ¼

Z X

0
hðx; yÞrðx; y; tÞdx.
Fig. 2. Typical prey and predator population densities over their size ranges.
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Therefore,

Rðx; y; tÞ ¼ aðx; yÞ 1�

Z X

0
hðx; yÞRðx; y; tÞdx

� �
uðx; tÞ, (6)

where Rðx; y; tÞ ¼ rðx; y; tÞ=T is attack rate, measured in prey per
size per predator, per unit time. Eq. (6), the continuous analog of
the discrete equation (3), is a linear Fredholm integral equation for
the attack rate R. We can find its solution using the following
device. Define

Zðy; tÞ ¼
Z X

0
hðx; yÞRðx; y; tÞdx.

Then, from (6), R has the form

Rðx; y; tÞ ¼ aðx; yÞuðx; tÞð1� Zðy; tÞÞ. (7)

Substituting this back into (6) gives

aðx; yÞuðx; tÞð1� Zðy; tÞÞ

¼ aðx; yÞ 1�

Z X

0
hðx; yÞaðx; yÞuðx; tÞð1� Zðy; tÞÞdx

� �
uðx; tÞ.

Because Zðy; tÞ is independent of x, it can be brought out
of the integral and the last equation can be solved for Zðy; tÞ,
giving

Zðy; tÞ ¼
R X

0 hðx; yÞaðx; yÞuðx; tÞ; dx

1þ
R X

0 hðx; yÞaðx; yÞuðx; tÞdx
.

Therefore, from (7), upon simplification, the solution to the
integral equation (6) is

Rðx; y; tÞ ¼
aðx; yÞuðx; tÞ

1þ
R X

0 hðx; yÞaðx; yÞuðx; tÞdx
. (8)

This equation is the continuous analog to (5) and is the Holling
type II response for the continuously structured problem. The net
predation rate, in prey per time, on the prey in the interval ½x; xþ
Dx� is the sum of all the contributions from all the predators, or

predation rate ¼ Dx

Z Y

0

aðx; yÞuðx; tÞ

1þ
R X

0 hðx; yÞaðx; yÞuðx; tÞdx
pðy; tÞdy,

where, for clarity in the sequel, we have changed the dummy
variable in the integral in the denominator to x.

3.2. Prey dynamics

To derive the population law for the prey, we use a small box

method (see Logan, 2008a) and write a balance equation for the
prey in a small range I ¼ ½x; xþDx�. In words, the time rate of
change in the number of prey in I equals the rate that prey enter
the region at x, minus the rate that they leave at xþDx, minus the
rate that they die of natural causes in the interval I, minus the rate
that they perish in I by predation. We denote the natural per
capita mortality rate by mðx; tÞ, and let gðx; tÞ be the growth rate of
prey of size x at time t, or

dx

dt
¼ gðx; tÞ. (9)

Then the balance law is, symbolically,

@

@t
ðuDxÞ ¼ gðx; tÞuðx; tÞ � gðxþ Dx; tÞuðxþDx; tÞ

� mðx; tÞuðx; tÞDx�Dx

Z Y

0
Rðx; y; tÞpðy; tÞdy.
Dividing by Dx and then taking the limit as Dx! 0 gives, after
simplification,

@u

@t
þ
@

@x
ðgðx; tÞuÞ ¼ � mðx; tÞu

�

Z Y

0

aðx; yÞpðy; tÞ

1þ
R X

0 aðx; yÞhðx; yÞuðx; tÞdx

 !
dy. (10)

This nonlinear partial differential–integral equation is the prey

population equation.
Case 1. Assume that the predator density pðy; tÞ is given so that

we get only a problem for the prey; that is, predators are
superimposed upon the system. We assume an initial condition

uðx;0Þ ¼ u0ðxÞ; 0pxpX (11)

and we impose a McKendrick–von Foerster type boundary
condition along x ¼ 0 of the form

gð0; tÞuð0; tÞ ¼

Z X

0
bðxÞuðx; tÞdx, (12)

where b is the maternity function (offspring per prey). Then,
Eqs. (10)–(12) form a well-posed set of equations for the prey
density when the predator density is prescribed. For illustration,
we formulate some special cases of the nonlocal term on the right
side of (10).

Case 2. As expected, when the handling times are zero, i.e.,
hðx; yÞ ¼ 0, Eq. (10) reduces to the population law with a
mass–action (or Lotka–Volterra) type predation term:

@u

@t
þ
@

@x
ðgðx; tÞuÞ ¼ �mðx; tÞu� u

Z Y

0
aðx; yÞpðy; tÞdy.

Case 3. Another simple case, and the one that resembles the
classical Holling relationship, occurs when the encounter rate and
handling time are constants, i.e., aðx; yÞ ¼ a and hðx; yÞ ¼ h, and all
predators consume all prey. This means the encounter rate and
handling rate do not depend on prey or predator sizes. Then (10)
becomes

@u

@t
þ
@

@x
ðgðx; tÞuÞ ¼ �mðx; tÞu� au

R Y
0 pðy; tÞdy

1þ ah
R X

0 uðx; tÞdx
.

The two integrals represent the total populations UðtÞ and PðtÞ of
the prey and predator, respectively. Thus, the governing popula-
tion law is simply

@u

@t
þ
@

@x
ðgðx; tÞuÞ ¼ �

au

1þ ahUðtÞ
PðtÞ.

Case 4. When x is a development variable, given, say, in degree-
days, then dx=dt is the rate of development, given in degree-days
per day. For many exothermic animals (for example, many
arthropods) the development rate is a strongly nonlinear function
of temperature, or r ¼ rðyÞ. Therefore, if a temperature profile y ¼
yðtÞ is prescribed, then

dx

dt
¼ rðyðtÞÞ.

Therefore, the growth rate is gðx; tÞ ¼ rðyðtÞÞ and the differential
operator on the left side of (10) has the form of a simple advection
operator ð@u=@tÞ þ rðyðtÞÞð@u=@xÞ: The predation term can also
depend upon temperature through the encounter rate. It has
been demonstrated in several works (e.g., see Joern et al., 2006,
and references contained therein) that the encounter rate can
change depending upon temperature-dependent shifts in daily
activity times for both the predator and the prey. In this case (10),
to which a development dependent natural mortality rate is
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appended, becomes

@u

@t
þ rðyðtÞÞ

@u

@x
¼ � mðx; tÞu

� u

Z Y

0

aðx; y; yðtÞÞpðy; tÞ

1þ
R X

0 aðx; y; yðtÞÞhðx; yÞuðx; tÞdx

( )
dy,

(13)

which is a generalized, continuously structured version of a
nonstructured, discrete model of grasshopper–spider interactions
studied by Logan et al. (2006). Upon altering the temperature
variation yðtÞ one can use (13) to examine changes in predation
level that might be expected under climate changes. Logan
(2008b) discusses this type of model when the handling times
are zero, or when the functional response is Lotka–Volterra type.
See also Logan and Wolesensky (2007a, b).

Finally, we mention an alternate derivation of (8) using the
discrete model. If the prey interval 0pxpX is divided into K equal
subintervals of length Dx; then the K prey populations, one for
each subinterval, form a discrete set of K different populations,
each having individuals of approximately the same size. Then the
theory of Section 2 may be applied to obtain discrete attack rates,
as in (5). Regarding the sums in these expressions as Riemann
sums, and then taking the limit as Dx! 0; we obtain the integral
form of the response (8). The chief benefit of the derivation above
is notational; a discrete-based derivation requires notation with
more multiple indices.

3.3. The predator equation

Now we derive the balance law for the predator population
density. Similar to the prey, discussed above, the balance equation
for predators in the arbitrary size interval ½y; yþ Dy� is given by

@

@t
½pðy; tÞDy� ¼ gðy; tÞpðy; tÞ � gðyþ Dy; tÞpðyþ Dy; tÞ

�mðy; tÞpðy; tÞDyþ predation rate, (14)

where dy=dt ¼ gðy; tÞ is the growth rate of predators in the
structure variable, and mðy; tÞ is the per capita mortality rate.

It is important to interpret the predation term accurately.
Normally, the predation rate is the net increase in predators
in the size interval ½y; yþDy� caused by predation on all relevant
prey. However, in this case, predation does not increase the
number of predators in the ½y; yþ Dy� age class because new
predators can enter the population only through birth events.
Rather, we may interpret predation as an effect that decreases
the mortality of the predators in that class. Simply put, for
predators, food availability and predation increase the chance
of survival. Another effect of increased predation could be
increased predator fecundity during the fertile period, leading to
additional offspring. Finally, in some models involving develop-
ment as the structured variable, increased predation may speed
the predator’s route through the development period (i.e.,
increasing gðy; tÞÞ.

To obtain the form of the predation term we note that
Rðx; y; tÞDx is the rate that prey in the interval ½x; xþ Dx� are
consumed by a predator of size y. (RDx is in prey per predator, per
unit time). But prey units are converted to predator benefits by
cðx; yÞ, the conversion efficiency. Thus cðx; yÞRðx; y; tÞDx is the rate
that prey in ½x; xþ Dx� are converted to a benefit for a predator of
size y. Because a predator of size y consumes many sizes of prey,
we integrate over all prey to obtain the net benefit. Multiplying by
the total number of predators in ½y; yþ Dy�; the predation rate is
given by

predation rate ¼ pðy; tÞDy

Z X

0
cðx; yÞRðx; y; tÞdx.
Substituting into the balance law (14), dividing by Dy, and then
taking the limit as Dy! 0, gives the final form of the predator
equation:

@p

@t
þ
@

@y
ðgðy; tÞpÞ ¼ �mðy; tÞpþ p

Z X

0

cðx; yÞaðx; yÞuðx; tÞ

1þ
R X

0 aðx; yÞhðx; yÞuðx; tÞdx

( )
dx.

In summary, the governing equations for the continuous
structured predator–prey interaction are

@u

@t
þ
@

@x
ðguÞ ¼ �mðx; tÞu� u

Z Y

0

aðx; yÞpðy; tÞdy

1þ
R X

0 aðx; yÞhðx; yÞuðx; tÞdx

 !
,

(15)

@p

@t
þ
@

@y
ðgpÞ ¼ �mðy; tÞpþ p

Z X

0

cðx; yÞaðx; yÞuðx; tÞdx

1þ
R X

0 aðx; yÞhðx; yÞuðx; tÞdx

( )
.

(16)

To supplement the predator equation, we expect to impose an
initial condition

pðy;0Þ ¼ p0ðyÞ; 0pypY (17)

and a birth condition

gð0; tÞpð0; tÞ ¼
Z Y

0
bðyÞpðy; tÞdy; t40, (18)

where b is the predator’s maternity function. Thus, the final form
of the model is (15) and (16) along with auxiliary conditions (11),
(12), (17), and (18).

Case 5. In the case where the handling time is zero we obtain a
generalization of the classical Lotka–Volterra model in the form of
a coupled system of nonlocal partial differential equations,

@u

@t
þ
@

@x
ðgðx; tÞuÞ ¼ �mðx; tÞu� u

Z Y

0
aðx; yÞpðy; tÞdy,

@p

@t
þ
@

@y
ðgðy; tÞpÞ ¼ �mðy; tÞ þ p

Z X

0
cðx; yÞaðx; yÞuðx; tÞdx.

This is a generalization of a model studied by Logan (2008a) to
examine temperature effects on predation when x and y are
development variables (degree-days) and g and g are develop-
ment rates (degree-days per day) of the prey and predators,
respectively.

Case 6. A model of a different type occurs when the predators
only consume the newborns (e.g., the eggs) of the prey. If the
structure variable is age, then g ¼ 0 and the prey equation is

@u

@t
þ
@u

@x
¼ �mðx; tÞu.

There is no predation term because the PDE holds only on the
open interval 0oxoX. Instead, the predation of newborns affects
the initial condition and (12) must be modified. If PðtÞ denotes the
total number of predators at time t, then (12) is replaced by

uð0; tÞ ¼ BðtÞ �
aBðtÞPðtÞ

1þ aheBðtÞ
, (19)

where BðtÞ ¼
R X

0 bðxÞuðx; tÞdx, a is the encounter rate of a predator
with newborns, and he is the constant handling time. We require
that the right side of (19) is nonnegative; otherwise we take it to
be zero. The predator dynamics may be given by a differential
equation of the form

dP

dt
¼ �mP þ

caBðtÞPðtÞ

1þ aheBðtÞ
,

where c is the conversion factor. This model is a generalization of
that of Saleem (1984).
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4. Structured prey with fixed predators

Continuous time, physiologically structured equations like (15)
and (16) are analytically intractable and can only be resolved
numerically. It is interesting, however, to find special cases that
may be solved analytically, either completely or partially. In this
section we consider a case where the prey is age-structured and
the predator population is fixed. This might be a reasonable model
in the case of a generalist predator whose population is largely
insensitive to the population of the prey of interest. It might also
be reasonable for time periods short enough that the predator
population is unaffected by birth and death and predator growth
is limited.

We begin with Eq. (10), with some additional simplifying
assumptions:
1.
 The detectability is d ¼ 1, so that detection is independent of
the physiological state.
2.
 The prey is structured by age, so that g ¼ 1.

3.
 The predator search rate is independent of prey age.

4.
 The per capita mortality is independent of time.

5.
 The handling time takes the form hðx; yÞ ¼ DðyÞwðxÞ, where w is

the mass of prey of age x and D is the digestion time per unit
mass for the predator.
With these assumptions, the prey dynamics can be reformu-
lated as

@u

@t
þ
@

@x
ðuÞ ¼ �mðxÞu� u

Z Y

0

aðyÞpðyÞdy

1þ aðyÞDðyÞ
R X

0 wðxÞuðx; tÞ dx
. (20)

Eq. (20) contains an advection operator, and the right side is a
nonlocal source term. To complete the formulation of the
problem, we impose an initial condition,

uðx;0Þ ¼ u0ðxÞ; 0pxpX (21)

and a boundary condition

uð0; tÞ ¼ BðtÞ ¼

Z X

0
bðxÞuðx; tÞdx; t40, (22)

where bðxÞ is the maternity function (fecundity) for the prey. We
make reasonable biological assumptions that h and b are
nonnegative, bounded functions with

h040; hð0Þ ¼ 0; bð0Þ ¼ 0.

For use in the sequel, we define the cumulative mortality function
by

MðxÞ ¼
def
Z x

0
mðsÞds. (23)
4.1. Asymptotic prey viability

In this model, defined by (20)–(22), we first examine the
question of longtime (t!1) viability of the prey. Clearly, the
partial differential equation shows that the population declines,
but the boundary condition boosts the population. The conditions
for viability involve the interplay among mortality, predation, and
birth.

We first examine the case with no predation. Let vðx; tÞ be
the solution to (20)–(22) when p ¼ 0. Then we obtain the
standard problem

@v

@t
þ
@v

@x
¼ �mðxÞv; 0oxoX; t40,

vðx;0Þ ¼ u0ðxÞ; 0pxpX,

vð0; tÞ ¼ BðtÞ ¼

Z X

0
bðxÞvðx; tÞdx; t40.

By the method of characteristics (Allen, 2007; Logan, 2008b) the
solution to the problem in the region 0oxoX, t4X is

vðx; tÞ ¼ Bðt � xÞe�MðxÞ.

The solution in this region is affected only by the boundary
condition, and not the initial condition. It follows that

BðtÞ ¼

Z X

0
bðxÞBðt � xÞe�MðxÞ dx; t4X.

Assume a solution to the form BðtÞ ¼ elt : Substituting gives an
equation for l;

IðlÞ ¼def
Z X

0
bðxÞe�MðxÞ�lx dx ¼ 1, (24)

which is an analog to the Euler–Lotka equation. We observe that
IðlÞ is continuous and strictly monotone decreasing with IðlÞ !
þ1 as l!�1, IðlÞ ! 0 as l!þ1. Therefore, there is a unique
solution l� satisfying Iðl�Þ ¼ 1, and

vðx; tÞ ¼ el
�
ðt�xÞe�MðxÞ; 0oxot; t4X.

Consequently, if l�o0, then vðx; tÞ ! 0 as t!1. Finally, because
0pupv, we have the result:

If l�o0 then lim
t!1

uðx; tÞ ¼ 0.

So, in the case l� is negative, the solution to (20)–(22) vanishes as
t!1 .

4.2. Prey control by predation

Next we examine the behavior of models (20)–(22) with l�40.
We first consider the possibility finding a steady state solution of
the form

uðx; tÞ ¼ uSSðxÞBðtÞ; uSSð0Þ ¼ 1, (25)

where the steady-state structure uSS and birth rate B are to be
determined and B0 ¼

def
Bð0Þ.

We are specifically looking for population age distributions
uSSðxÞ that are maintained as the population changes and
functions BðtÞ that give the time history of such populations.
Later we relax this condition and use a comparison result to
obtain the solution behavior for an arbitrary initial population
distribution. Substitution of the form (25) into the differential
equation (20) yields

B0

B
þ

Z Y

0

aðyÞpðyÞdy

1þW0aðyÞDðyÞB

� �
ðtÞ ¼ �

u0SS

uSS
þ m

� �
ðxÞ ¼ l, (26)

where l is a separation constant to be determined and

W0 ¼
def
Z X

0
wðxÞuSSðxÞdx. (27)

The boundary condition (22) becomes a consistency conditionZ X

0
bðxÞuSSðxÞdx ¼ 1. (28)

From Eqs. (26) and (28), we obtain the result

uSSðxÞ ¼ e�MðxÞ�l�x, (29)

where l� is again the solution to Eq. (24). The constant W0

is now determined, and the remaining problem for the birth
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rate B is

B0 ¼ ðl� � J½B�ÞB; Bð0Þ ¼ B0, (30)

where B0 is the given initial birth rate and J is the functional

J½B� ¼
def
Z Y

0

aðyÞpðyÞdy

1þW0aðyÞDðyÞB
. (31)

The birth rate equation has a positive equilibrium solution if
and only if there exists some B�40 for which J½B�� ¼ l�. Since J½B��

is monotone decreasing from J½0� to 0 as B increases from 0 to
infinity, it follows that there exists a unique positive equilibrium if
and only if J½0�4l�; in other wordsZ Y

0
aðyÞpðyÞdy4l�. (32)

If the predator population does not meet this requirement for a
positive equilibrium, then the birth rate (and also the prey
population) is monotone increasing. A larger predator population
may not control the prey either. The equilibrium birth rate is
unstable, so the predator controls the population only if the initial
birth rate of the prey population is smaller than the positive
equilibrium solution. More simply, we have the following result:

Proposition 1. Consider problems (20)–(22) where u0 ¼ e�MðxÞ�l�x.
If J½B0�4l�, then limt!1u ¼ 0. In particular, the prey population

decreases to 0 if the predator population is sufficiently large.

Now we consider the case that the initial population u0ðxÞ

population is arbitrary. There is always a threshold predator
population, given in terms of total search capacity, that is
sufficient to control the prey population. We state this formally
in the following proposition.

Proposition 2. Consider problems (20)–(22) where b, w, u0, m, a,
and D are arbitrary, M and l� are given by (23) and (24), and

W�
0 ¼

def
Z X

0
e�MðxÞ�l�x dx.

Then limt!1u ¼ 0 wheneverZ Y

0
aðyÞpðyÞdy4l�½1þW�

0D0B0�,

where

D0 ¼ max
y
½aðyÞDðyÞ�; B0 ¼ max

x
½eMðxÞþl�xu0ðxÞ�.

Proof. Let D0 be the maximum of the function aðyÞDðyÞ and let B0

be the maximum of the function eMðxÞþl�xu0ðxÞ. Then without loss
of generality, suppose that the initial population is increased so
that

uðx;0Þ ¼ B0e�MðxÞ�l�x
Xu0ðxÞ.

This change clearly increases both the population and the birth
rate for all time; hence, a predator population sufficient to control
the increased initial population is certainly sufficient to control
the original initial population. Now choose p so thatZ Y

0
aðyÞpðyÞdy4l�½1þW�

0D0B0�.

Then

J½B0� ¼

Z Y

0

aðyÞpðyÞdy

1þW�
0aðyÞDðyÞB0

X

R Y
0 aðyÞpðyÞdy

1þW�
0D0B0

4l�.

The prey population, given the increased initial population,
decreases to 0 by Proposition 1; hence, so does the prey
population with initial population u0. &
5. Uniform bolus of predators

We now simplify the model further by considering a scenario
in which a uniform bolus of P predators is introduced at time 0
into a prey population experiencing unrestricted growth. The
initial prey distribution is that of (29), so the total prey population
is given by

UðtÞ ¼ CBðtÞ; C ¼

Z X

0
e�MðxÞ�l�x dx, (33)

where problem (30) for B simplifies to

B0 ¼ B l� �
aP

1þW0aDB

� �
; Bð0Þ ¼ B0 ¼ C�1Uð0Þ,

where a and D are taken to be the values of these functions at the
appropriate y corresponding to the bolus of predators. This
problem yields the solution in implicit form:

t ¼
1

aP � l�
aP

l�
ln

B� Z
B0 � Z

� ln
B

B0

� �
; Z ¼ aP � l�

l�W0aD
. (34)

Now consider cases with a uniform bolus of predators but with
a nonequilibrium initial prey distribution. We must return to the
partial differential equation model and apply numerical methods.
We assume a bang–bang allocation strategy, in which the prey
organisms grow to maturity at age xD and then begin reproduc-
tion. The problem is then given by

@u

@t
þ
@u

@x
¼ �u mþ aP

1þ aDWðtÞ

� �
; 0oxoX; t40,

uð0; tÞ ¼ BðtÞ ¼

Z X

xD

bðxÞuðx; tÞdx

with initial condition (21), where

WðtÞ ¼
def
Z xD

0
wðxÞuðx; tÞdxþ

Z X

xD

wAuðx; tÞdx; wA ¼
def

wðxDÞ

and with the total prey population given as

UðtÞ ¼

Z X

0
uðx; tÞdx.

For convenience, we nondimensionalize this model, using xD as
the reference time, wA as the reference for individual weight, 1=xD

as the reference for individual birth rate, 1=aD as the reference for
total population weight, 1=aDwA as the reference for total
population, and 1=xDaDwA as the references for total birth rate
and population density u. Thus, we take

t ¼ xDt0; x ¼ xDx0; u ¼
u0

xDaDwA
; w ¼ wAw0; b ¼

b0

xD
,

u0 ¼
u00

xDaDwA
; U ¼

U0

aDwA
; W ¼

W 0

aD
; B ¼

B

xDaDwA

and we define new (dimensionless) parameters by

X0 ¼
X

xD
; m0 ¼ xDm; P0 ¼

aP

m .

Thus, X0 is the lifetime measured in terms of the development
time, 1=m0 is the mean lifespan measured in terms of the
development time, and P0 is the predator density relative to the
minimum predator density necessary for predation to equal
natural death in prey population suppression. Given these scales,
W ¼ 1 is the prey biomass for which the predator functions at
half-saturation, U ¼ 1 is the population that has unit biomass if
exclusively adult, and B is the average adult reproduction during
one time unit.
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Fig. 3. Numerical solutions to model (35)–(42), with U0 ¼ 1:35 (top row) and U0 ¼ 1:4 (bottom row). Here, U0 is the initial population level of prey.
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After introducing the dimensionless quantities listed above, we
obtain the model

@u

@t
þ
@u

@x
¼ �mu 1þ

P

1þWðtÞ

� �
; 0oxoX; t40, (35)

WðtÞ ¼

Z 1

0
wðxÞuðx; tÞdxþ

Z X

1
uðx; tÞdx, (36)

uð0; tÞ ¼ BðtÞ ¼

Z X

1
bðxÞuðx; tÞdx, (37)

uðx;0Þ ¼ u0ðxÞ, (38)

UðtÞ ¼

Z X

0
uðx; tÞdx. (39)

As reasonable examples, we choose the functions

wðxÞ ¼ 8ð1� 2�x
Þ
3; bðxÞ ¼ bmðX � xÞ. (40)

Our choice for w is based on von Bertalanffy growth, with the
parameters chosen so that wð1Þ ¼ 1 and the adult length is half
the physiological maximum (Ledder et al., 2004). Our choice for b

of a linear function with birth rate 0 at x ¼ X is based on data
collected for aphids (Tenhumberg et al., 2009). Rather than
specifying a value for the parameter bm, we specify a value for
l% and then use (24) to calculate bm, with the result

bm ¼
ðmþ l�Þ2emþl

�

ðmþ l�ÞðX � 1Þ � 1þ e�ðmþl
�
ÞðX�1Þ

. (41)

To complete the model specification, we must choose para-
meters X, m, l%, and P, and initial population u0. For our numerical
examples, we choose X ¼ 2 and m ¼ 1, which are reasonable
values corresponding to the assumption that the maximum adult
survival period, the mean lifespan, and the mean development
time are all equal. We choose l� ¼ 2, which corresponds to an
assumption that the population doubling time is about one-third
of the generation time. Eq. (41) gives us

bm ¼
9e3

2þ e�3
� 88.

We choose a moderate value P ¼ 4, which means that the
predator population is sufficient to increase the death rate up to
fivefold. For the initial condition, we postulate a population of U0

individuals with ages uniformly distributed over the interval
½1;1:2�, corresponding to an initial prey population consisting of
young migrating adults:

u0ðxÞ ¼ 5U0Hð0:1� jx� 1:1jÞ, (42)

where H is the Heaviside unit step function.
Because the characteristics of (35) are the straight lines x ¼

t þ C of speed 1, where C is constant, we can introduce a grid in
the xt plane with step sizes Dx and Dt with Dx ¼ Dt: We can then
apply a simple upwind method. The integrals are calculated using
Simpson’s rule and the resulting differential equation integrated
with the standard fourth-order Runge–Kutta using MATLAB.

Fig. 3 shows the results of simulations in which the initial prey
population is just below and just above the critical value for which
the solution bifurcates between prey elimination and prey growth.
The graphs show transient oscillations that are due to the large
deviation of the initial structure from the steady-state structure
(29), with the transition to monotone decay or growth coming
after about four generations. The birth rate graph is the most
telling. The initial cohort is almost gone by t ¼ 1, which is when
the next generation is just beginning to mature. Thereafter, there
are large oscillations in the birth rate, driven by changes in the
population structure. These oscillations are illustrated in Fig. 4
through phase portraits. We see that there is an extended period
of oscillation in the mean mass W=U, gradually approaching a
value of approximately 0.15. The birth rate follows the trend in the
mean mass except for one final oscillation, while the mean mass
increases in response to a decrease in the birth rate and vice versa.
Eventually, the population approaches its steady structure (29), at
which point the ultimate fate of the model is governed by
Proposition 2.
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6. Summary

We have derived a structured predator–prey model where the
interaction is given by a Holling type II functional response. This
leads to a set of partial differential–integral equations for the prey
and predator densities. The equations are coupled through the
nonlinear interaction, or source, terms. It appears that this general
model has not been considered in the literature. The examples
show that the general equations reduce to several interesting
predator–prey models.

The key points in this paper can be summarized as follows:
1.
 We have derived a top-down, continuous time Holling type 2
response for both physiologically structured predators and
prey.
2.
 Both the handling times and encounter rates can depend upon
predator and prey physiological states.
3.
 Special cases of the model lead to some of the standard
structured predator–prey models in the literature.
4.
 The model provides a toolbox for the study, both practical and
theoretical, of a wide array of predator–prey interactions with
regard to their age, size, weight, and stage of development.
Handling times, or digestion times, can depend upon size, as
can discovery rates.
5.
 Exogenous environmental factors, such as those factors
associated with global climate change, can be included in the
growth rate functions or the discovery rates. Stochasticity can
be included as well.
6.
 A theoretical and numerical study of a continuously structured
prey subject to predation by a unstructured predator whose
population is fixed shows an interesting bifurcation and
sensitivity with respect to the balance of predator population
with the initial prey population and with the structure of the
initial prey population. The calculations show oscillations
during the first few generations before bifurcating into stable
structures that grow or decay, depending upon the initial level
of the prey population.
7.
 The calculations point the way to possible experiments to
verify this sensitivity in agriculturally important systems in
fields and greenhouses.
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