
Solution Methods for Linear Differential Equations

Linear differential equations of order n have the form

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = g(x). (1)

The equation is homogeneous if g(x) = 0. Usually we’ll only be able to solve the equation
if it is first order or the left side has constant coefficients. It is convenient to think of the
left-hand side as a linear differential operator, by which we mean an algebraic construction
that uses derivatives of a function y to produce a new function L[y] that uses the same
independent variable. For example, if L[y] = y′′ + y and yp = e3x, then y′′p = 9e3x and
L[yp] = 10e3x. This confirms that yp = e3x is a solution of the equation y′′ + y = 10e3x.

Stop for a moment and see if you can find a solution of y′′+y = e3x. Use what we’ve already
figured out to identify a function that gives the right answer for L[y].

1. Generalized Exponential Functions

It is convenient to expand the class of exponential functions to a larger class of generalized
exponential functions. Each of these functions is associated with a characteristic value, which
can be either real or complex. In the table below, the notation p1(x) refers to any first degree
polynomial. These are all the functions that can solve homogeneous linear equations.

Table 1: Generalized Exponential Functions
Functions Characteristic Value(s)
1 0
emx m
cos βx ±iβ
sin βx ±iβ
eαx cos βx α± iβ
eαx sin βx α± iβ
p1(x) 0, 0
p1(x)emx m, m
p1(x) cos βx ±iβ, ±iβ
p1(x) sin βx ±iβ, ±iβ
p1(x)eαx cos βx α± iβ, α± iβ
p1(x)eαx sin βx α± iβ, α± iβ
...

...

Stop for a moment and check L[e−x cosx] = 0 where L[y] = y′′ + 2y′ + 2y. This confirms
that e−x cosx is a generalized exponential function.
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2. Homogeneous Linear Equations

Homogeneous linear equations with constant coefficients have solutions that are generalized
exponential functions. All we have to do to solve them is find the characteristic values for L
and match them to the appropriate functions in the table. We find the characteristic values
by finding the roots of the characteristic polynomial obtained by substituting y = emx into
L[y].

Example 1: y′′ + 2y′ + 2y = 0
The characteristic equation is m2+2m+2 = 0, or m2+2m+1 = −1, where we have retained
1 on the left hand side to make a perfect square. Then (m+ 1)2 = −1. Taking square roots,
we have m+ 1 = ±i or m = −1 ± i. The associated functions are e−x cosx and e−x sinx, so

y = c1e
−x cosx+ c2e

−x sinx.

Example 2: y′′ + 2y′ + y = 0
The characteristic equation is m2 + 2m+ 1 = 0, or (m+ 1)2 = 0. Thus, m = −1 is a double
root. The two solutions we need are e−x and xe−x, so

y = (c1 + c2x)e−x.

Stop for a moment and check L[xe−x] = 0 where L[y] = y′′ + 2y′ + y.

To solve L[y] = 0 where L has constant coefficients:

1. Assume y = emx and obtain the characteristic equation for the unknown m.

2. Find the roots of the characteristic polynomial, being careful to include pairs of complex
roots and keeping track of the number of factors (multiplicity) of each root.

3. Write solutions for each root.

• A real root m of multiplicity k gives solutions emx, xemx, . . ., xk−1emx.

• A complex pair α ± iβ of multiplicity k gives solutions eαx cos βx, eαx sin βx,
xeαx cos βx, xeαx sin βx, . . . xk−1eαx cos βx, xk−1eαx sin βx.

3. Nonhomogeneous Linear Equations

To solve L[y] = g(x):

1. Find the general solution yh = c1y1 + c2y2 + · · · + cnyn of the homogeneous equation
L[y] = 0.

2. Find a particular solution yp of the equation L[y] = g(x).

3. The general solution of L[y] = g(x) is y = yh + yp.

Two difficulties can arise in implementation of this method. First, it depends on our
being able to solve the homogeneous equation. This is easy for first-order equations and all
equations with constant coefficients, but it is often impossible in other cases. Second, finding
a particular solution can be very difficult. We’ll consider three ways of doing this.
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4. Variation of Parameters for First-Order Equations

Variation of parameters can always be used for first-order linear equations. This is because
the homogeneous equation is always separable so that a function y1 and the homogeneous
solution yh = c1y1 are known. While there are technical details, the method itself is straight-
forward.

To find yp for a1(x)y′ + a0(x)y = g(x), given the general solution y = c1y1 of
a1(x)y′ + a0(x)y = 0:

1. Construct the function u′(x) = g(x)/y1(x).

2. Integrate u′ to get a function u.

3. Then yp = u(x)y1(x).

Example 3: y′ + 2y = 4e2x

We have y1 = e−2x, u′ = 4e2x/e−2x = 4e4x, u = e4x and yp = e4xe−2x = e2x.

5. Variation of Parameters for Second-Order Equations

Variation of parameters can be used for second-order linear equations if we can first find
the homogeneous solution yh = c1y1 + c2y2. As with first-order equations, the method is
straightforward, but the technical details can be problematic.

To find yp for a2(x)y′′+a1(x)y′+a0(x)y = g(x), given the general solution y = c1y1+c2y2
of a2(x)y′′ + a1(x)y′ + a0(x)y = 0:

1. Calculate the Wronskian W (x) = y1y
′
2−y′1y2, calculate and simplify the function g/W ,

and construct the functions

u′2(x) = y1
g

W
, u′1 = −y2

g

W
.

2. Integrate u′1 and u′2 to get functions u1 and u2.

3. Then yp = u1(x)y1(x)+u2(x)y2(x). This formula should always be simplified if possible.

Example 4: y′′ − 3y′ + 2y = e2x

The homogeneous problem yields y1 = ex and y2 = e2x. Then W = e3x and g/W = e−x.
So u′2 = 1 and u′1 = −ex. Integrating gives us u1 = −ex and u2 = x. The final result is
yp = −e2x + xe2x. This is a correct particular solution, but it is not the simplest one. The
term −e2x is not needed because it is part of the homogeneous solution c1e

x + c2xe
−x. So

we could just use yp = xe2x.

Stop for a moment and check that yp = xe2x is in fact a particular solution. Also check the
result for the Wronskian.
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6. Undetermined Coefficients for Equations with Constant
Coefficients and g a Generalized Exponential Function

A general rule of thumb in mathematics is that the more a method makes use of the special
structure of a problem, the easier it is likely to be to use the method. This is the principle
of the method of undetermined coefficients. Subject to an important correction, the idea is
that if you want a particular type of generalized exponential function to come out of a linear
differential operator with constant coefficients, you have to put in the same type of function.

Example 5: L[y] = y′′ + 4y = 8x3

Note that (after simplifying) L[x3] = 4x3+6, L[x3+x2] = 4x3+4x2+6x+2, and L[2x3−3x] =
8x3. So we got lucky: the particular solution is yp = 2x3− 3x. Unfortunately, we can’t solve
problems by guessing. What we can do is identify the structure of the solution and put
it to use. In each of the three examples, the input function was a cubic polynomial and
the output function was also a cubic polynomial. If we were solving this problem without
pre-knowledge of the answer, all we would know without doing any calculations is that
L[Ax3 + Bx2 + Cx+D] is a 4-parameter family of cubic polynomials. Then all we have to
do is find the coefficients A, B, C, and D. We have

y = Ax3 +Bx2 + Cx+D, y′ = 3Ax2 + 2Bx+ C, y′′ = 6Ax+ 2B,

and so
L[Ax3 +Bx2 + Cx+D] = 4Ax3 + 4Bx2 + (6A+ 4C)x+ (8B +D).

If we choose just the right values of the four coefficients, we can get L[Ax3+Bx2+Cx+D] =
8x3. This requires

4A = 8, 4B = 0, 6A+ 4C = 0, 8B +D = 0.

Thus A = 2, B = 0, C = −3, and D = 0, yielding the solution y = 2x3 − 3x.

If you think Example 5 was hard work, then stop for a moment and try solving the problem
with variation of parameters. Be prepared to integrate by parts six times only to see most of
the results cancel when you combine u1y1 and u2y2!

The method of undetermined coefficients requires a bit more nuance. Look back at Example
4. We used variation of parameters to find the particular solution yp = xe2x for y′′−3y′+2y =
e2x. This doesn’t look right. Based on our earlier work, we should expect to put in a constant
times e2x and get back a different constant times e2x. But that isn’t what happens: instead
e2x solves y′′−3y′+2y = 0. The problem is that there is a conflict between the characteristic
values of yh (1 and 2) and the characteristic value of g (2). When the characteristic value of
g is a root of multiplicity k of the characteristic equation, then L reduces the degree of the
input polynomial by k. Here, 2 is a root of multiplicity 1. If we put in a constant times e2x,
we get nothing. If we put in Axe2x, the result should be a constant times e2x, which is what
we want. The structure of the problem tells us that we should use yp = Axe2x for this L,
not yp = Ae2x.
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To find yp for L[y] = g(x), given an operator L with constant coefficients, along
with a generalized exponential function g:

1. Start by constructing the most general function that has the same characteristic value
as g and the same degree of polynomial factor.

2. If the characteristic value of g matches a characteristic value of L having multiplicity
k, then the initial form for yp must be multiplied by xk.

3. Given your form for yp, compute L[yp] and set it equal to g. If your form was correct,
you will get just the right number of equations and be able to solve them uniquely for
the unknown coefficients.

Example 6: L[y] = y′′ + 2y′ + y = 6xe−x

The function g has characteristic value −1 and degree 1, so our first try is yp = (Ax+B)e−x,
which is the most general form that includes a product of a first degree polynomial and
e−x. However, the characteristic equation for this L is (m + 1)2 = 0, making −1 a root
of multiplicity 2 and putting e−x and xe−x into the homogeneous solution. So we have to
multiply our initial form by x2. The correct form for yp is yp = (Ax3 + Bx2)e−x. Applying
the method yields the particular solution yp = x3e−x.

Stop for a moment and make sure you know how to complete the calculation of yp. Compute
L[(Ax3 + Bx2)e−x], set the result equal to g, and solve for A and B to get the answer
yp = x3e−x.

Example 7: L[y] = y′′ + 2y′ + y = 25 cos 2x
The function g has characteristic values ±2i and the polynomial degree is 0, so we start with
yp = A cos 2x+B sin 2x, which is the most general form for this pair of characteristic values
and degree 0. Fortunately ±2i is not a characteristic value pair for L, so we have the right
form. After simplifying, we get

L[A cos 2x+B sin 2x] = (4B − 3A) cos 2x+ (−4A− 3B) sin 2x.

The output needs to be cosx, so A and B have to satisfy the equations

4B − 3A = 25, −4A− 3B = 0.

The simplest way to solve these equations is to multiply the first by 3 and the second by 4:

12B − 9A = 75, −16A− 12B = 0.

After this multiplication, the coefficients of B in the two equations are 12 and −12. Adding
the two equations makes B disappear:

0B − 25A = 75.

So A = −3. Then 3B = −4A = 12, so B = 4. The particular solution is

yp = −3 cos 2x+ 4A sin 2x.
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