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Abstract. Onchocerciasis is an endemic disease in parts of sub-Saharan Africa.
Complex mathematical models are being used to assess the likely efficacy of

efforts to eradicate the disease; however, their predictions have not always been

borne out in practice. In this paper, we represent the immunological aspects
of the disease with a single empirical parameter in order to reduce the model

complexity. Asymptotic approximation allows us to reduce the vector-borne
epidemiological model to a model of an infectious disease with nonlinear inci-

dence. We then consider two versions, one with continuous treatment and a

more realistic one where treatment occurs only at intervals. Thorough mathe-
matical analysis of these models yields equilibrium solutions for the continuous

case, periodic solutions for the pulsed case, and conditions for the existence of
endemic disease equilibria in both cases, thereby leading to simple model crite-
ria for eradication. The analytical results and numerical experiments show that

the continuous treatment version is an excellent approximation for the pulsed

version and that the current onchocerciasis eradication strategy is inadequate
for regions where the incidence is highest and unacceptably slow even when

the long-term behavior is the disease-free state.
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1. Introduction. Onchocerciasis (known colloquially as “River Blindness”) is a
vector-borne disease affecting the skin and eyes of humans. It is endemic in parts
of Africa, Central America, and Yemen, with greater than 99% of the burden of
onchocerciasis found in sub-Saharan Africa [3]. In Central America, Guatemala
accounts for the largest at-risk population for onchocerciasis, but the disease has
been designated as eradicated there [17]. It is caused by the filarial nematode
Ochocerca volvulus, a parasitic worm with a complicated life cycle that includes
five larval stages, labeled L1-L5 , in Figure 1 [15]. Its life cycle includes stages
that require a human host and stages that require a black fly host of the genus
Simulium. The disease is listed by the World Health Organization as a neglected
tropical disease, but it has been on the agenda of the Carter Center’s River Blindness
Elimination Program.
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Figure 1. The O. volvulus life cycle, beginning with the microfi-
laria stage L1 in the human host. The microfilariae are transmitted
to the black fly of the genus Simulium via a bite. Within the black
fly, the larvae pass through larval stages L1-L3. At larval stage L3,
they are transmitted to a human host via a bite, where they pass
through the final larval stages L3-L5 and become adults [8].

If the microfilariae at stage L1 are not picked up by the vector, they can live in
the host from 6 to 24 months. After the black fly of genus Simulium ingests the
microfilariae at stage L1, it takes 6-12 days for the microfilariae to mature to stage
L3. Through a Simulium bite, the stage L3 larvae enter the human host and take
approximately a week to enter the final L5 larval stage. It takes an additional 7-15
months for these juvenile worms to mature to mating, with the adult worms having
a life span of 10-14 years. At maturity, female worms produce 700-1500 microfilariae
per day [8].

The black fly has peak biting times during the daylight hours and largely stays
within 5km of their breeding sites on well-oxygenated water. Communities living
on the river’s edge are more at risk than those further away, and it happens that the
peak biting times of the vector correspond with the times when the exposed class
of people are most likely to be at the river for activities such as gathering water or
washing [8].

There are several medications that can help treat onchocerciasis, including Di-
ethylcarbamazine and ivermectin (which are both microfilaricides) and Flubendazole
(which is a macrofilaricide). Due to adverse or pronounced side effects of some of
the medications, ivermectin (developed by Merck & Co Inc.) is considered to be
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the standard in effective treatment of onchocerciasis [8]. Oral administration of
ivermectin rapidly kills microfilariae that are present in the human host; it does not
kill the adult worms, but it does reduce their reproductive rate for several months
[3, 13]. In a study spanning 1987-1991, analysis of data from five consecutive an-
nual treatments with ivermectin showed reduced microfilariae production after each
treatment. The microfilariae production did gradually increase over a 10 month pe-
riod, reaching a plateau that was around 32% lower than pre-treatment values [13].
In spite of this, the distribution of ivermectin in sub-Saharan Africa remains a chal-
lenge due to many factors, including the more pronounced itching caused by the
increase in the number of microfilariae deaths brought on by treatment with iver-
mectin and the restriction that ivermectin is only approved for children and adults
over the age of 5 who are neither pregnant nor chronically ill [15].

In the African Programme for Onchocerciasis Control’s (APOC) progress report
for 2014-2015, 22 of 26 endemic countries (from a total of 28 endemic countries)
reported treatment data showing 65.3% global coverage, with 11 of the 22 endemic
countries achieving less than 65% coverage [1]. There are an estimated 125 million
people worldwide who are at risk for onchocerciasis, with the vast majority in Africa
[19].

A variety of models have been developed to study onchocerciasis. Most recent
work has been done using complex simulation software packages ONCHOSIM [14]
or SIMON [5] that include all immunological and epidemiological processes believed
to be relevant. These can be used to make predictions for specific locations, but the
value of the predictions are limited by the difficulty of estimating parameter values.
Although predictions from ONCHOSIM closely fit the data for the first five years
of ivermectin treatment, the results from the subsequent twelve years of treatment
showed the predictions from ONCHOSIM to be overly optimistic with regard to
the feasibility of eradication [4]. Even if good data is available, simulation models
cannot easily be used to characterize the overall effect of each parameter on model
behavior, so it is difficult to use them to obtain conclusions of broad applicability.

Another model in common use is EpiOncho [18], a population-based deterministic
model that incorporates immunological elements, such as the mean number of female
adult worms per host, the mean number of microfilaria per milligram of skin, and
the mean number of larvae per vector that are at the stage of development to be
transmitted to a human host, with epidemiological elements. The complexity of
the model again makes it difficult to draw broad conclusions that do not depend
strongly on estimated parameter values.

As an alternative to complex models, one can construct simpler models that
incorporate only the most important biological features of a setting or focus on
some aspects of a setting while oversimplifying others. For example, Basáñez and
Boussinesq [2] developed an immunological model that focuses on the population
dynamics of O. volvulus within the human hosts, while Remme et al [16] developed
a model that focuses on the force of infection.

Because disease eradication depends on epidemiological factors rather than im-
munological factors, there should be some value to developing a purely epidemio-
logical deterministic model for onchocerciasis; however, there does not seem to be
any such model for onchocerciasis epidemiology more recent than 1982 [6]. One
reason for this lack may be that the infectivity of human hosts to uninfected flies
is not a simple parameter, but is dependent on the microfilarial load, which varies
over time from almost nil immediately after ivermectin treatment to about 65% of
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that in untreated humans by a year after treatment [13]. Nevertheless, it is reason-
able to decouple the within-host dynamics from the epidemiological dynamics by
assuming an “effective” infectivity factor for which the basic reproductive number
of the model is roughly comparable to that of the actual disease.

Epidemiology models are classified according to the specific classes of individu-
als that need to be tracked (see [7] for an overview) and whether the diseases are
infectious or vector-borne. In Section 2, we extend the SEIS (susceptible, exposed,
infective, susceptible) model for a vector-borne disease to a nonstandard SEIPMS
model that distinguishes three classes of infectives: standard infectives who do not
participate in a health care system or are ineligible for ivermectin treatment (I),
premedicated infectives who are participants in a health care system but not yet
treated (P), and medicated infectives who have received ivermectin treatment (M).
We show how this model can be approximated as an infectious disease model with
nonlinear incidence. A linearized stability analysis provides a complete character-
ization of the equilibria as functions of a small number of model parameters. In
Section 3 we present a more realistic model that assumes health care delivery occurs
at discrete times rather than continuously and analyze that model by characteriz-
ing endemic periodic solutions, finding a uniqueness condition for the disease-free
solution, and showing that the disease-free solution is stable whenever it is unique.
Section 4 presents simulations that justify the use of an infectious disease model
for onchocerciasis and compare the outcomes of annual and continuous delivery of
health care.

2. A Continuous Model. An onchocerciasis model needs to have at least two
classes for the black fly host, one for the uninfected flies (U) and one for the infected
flies (V). In the absence of treatment, the human population needs to have at least
three classes: susceptible (S), exposed (E), and infective (I). The exposed class for
the human population is necessary because of the long incubation period for the
disease. We omit an exposed class of flies because their incubation period is less
than a week.

With treatment, it is necessary to use three infective classes for the humans:
standard infectives who do not participate in a health care system or are ineligible for
ivermectin treatment (I), premedicated infectives who are participants in a health
care system but not yet treated (P), and medicated infectives who have received
ivermectin treatment (M) (see Figure 2).

The model includes the following specific assumptions:

1. The human population N and fly population F are constant, as onchocerciasis
is not fatal to either and does not inhibit reproduction. These parameters vary
widely by region.

2. Human and black fly birth and death rates are proportional to the population
numbers, with rate constants µ for humans and d for the flies, respectively.
We take typical values to be µ = 0.02 and d = 12 from lifespan estimates of
50 years for humans (appropriate for the regions where the disease is most
prevalent) and 1 month for the flies.

3. The infection rate of humans is proportional to the susceptible population S
and the (infected) vector population V , with proportionality constant β. The
rate constant β depends on the rate at which humans are bitten by flies and
the probability that a given bite transmits the larvae. This value is hard to
measure directly.



EPIDEMIOLOGICAL MODELS FOR ONCHOCERCIASIS 5

S E

P

I

M

γP

βSV

pσE

qσE

φP

γMγM

γI

µN

µS µE

µI

µP µM

U V

dF

dU dV

αU [I + P + (1− ν)M ]

Figure 2. The SEIPMS-UV epidemiological model.

4. Exposed individuals become infectious at a rate proportional to their num-
ber, with rate constant σ that is independent of participation in the health
care system. The incubation period for onchocerciasis is about one year, be-
cause the larvae that infect humans must develop into a second larval stage
and mature into adult worms before the mature adults begin to produce the
microfilaria that infect the flies. Hence, a typical value is σ = 1.

5. Ivermectin treatment is available to a fraction p of the population, limited by
restrictions on who can receive the medication and limited health care coverage
and participation. Thus, the rates of progress from class E to classes P and I
are pσ and qσ, respectively, where q = 1− p. A typical value is p = 0.65 [1];
however, this quantity could perhaps be increased through interventions.

6. Individuals move from the premedicated class P to the medicated class M
at a rate proportional to the population, with rate constant φ taken as the
reciprocal of the mean time between the first production of microfilaria and
the onset of treatment. With typical health care delivery rates of once per
year, a typical value is φ = 2.

7. The infection rate of the fly vector is proportional to the product of the unin-
fected fly population F − V and the effective population of infective humans
(W ), with proportionality constant α. Like β, the factor α is hard to measure
directly.

8. The effective population of infective humans is W = I +P + (1− ν)M , where
ν is the relative decrease in infectivity of a medicated host compared to an
untreated host. In reality, ν is 1 shortly after treatment and gradually falls to
about 0.35 [13]. For our model that neglects population dynamics within the
host, we take ν to be constant, with a typical value of 0.6 to 0.8.

9. The O. volvulus life cycle cannot be completed in the absence of the fly host;
hence, there is a possibility for patients to be cured of the disease through
the deaths of all the adult worms. Adult worms have an average life span of
approximately 12 years, independent of the treatment, so we use a common
rate constant γ for the progress of all three infective classes to the S class,
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with typical value γ = 0.08. This assumption ignores the possibility of having
the infection reintroduced into human hosts who are already infected, which
would restart the clock for clearance of the disease; hence, our model will
overestimate the clearance rate.

These assumptions yield a model consisting of differential equations for E, I,
H = P +M (the population of infected individuals who are currently or will even-
tually be treated), M , and V , along with an algebraic equation for S:

dE

dT
= βSV − (σ + µ)E, (1)

dI

dT
= qσE − (γ + µ)I, (2)

dH

dT
= pσE − (γ + µ)H, (3)

dM

dT
= φH − (φ+ γ + µ)M, (4)

dV

dT
= α(F − V )W − dV, (5)

S + E + I +H = N, W = I +H − νM. (6)

where we have used T for time in order to reserve t for dimensionless time. Note
that differential equations are not needed for S and U because the populations N
and F are constant.

2.1. Nondimensionalization and Simplification. We define six dimensionless
parameters:

δ =
γ + µ

d
, ε =

µ

σ
, θ =

γ + µ

φ
, η =

γ + µ

σ + µ
, a =

αN

d
, b =

βF

γ + µ
. (7)

The parameters δ, ε, θ, and η are chosen for convenience from among many possi-
ble parameters representing ratios of time scales; specifically, δ, θ, and η represent
(approximately) the expected times for fly lifespan, treatment, and larval develop-
ment relative to the adult worm lifespan, respectively; while ε represents the ratio
of larva development time to human lifespan. The parameters a and b represent the
expected number of transmissions from a fully-infective human to a susceptible fly
and from an infective fly to a susceptible human, respectively.

The natural scale for all human population groups is the total population N ;
however, the analysis benefits from scaling groups according to the sizes needed for
equilibrium. In particular, the I and H equations establish that E = O(ηN), so
ηN is a better scale for E than is N . We choose the expected time in the infective
class for the time scale, so t = (γ + µ)T . With our typical parameter values, one
unit of dimensionless time represents about 10 years.

With the substitutions

S = Ns, E =
γ + µ

σ
Nx, I = Ni, H = Nh, M = Nm, V = Fv, t = (γ+µ)T, (8)
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the model becomes

η
dx

dt
= bsv − x, (9)

di

dt
= qx− i, (10)

dh

dt
= px− h, (11)

θ
dm

dt
= h− (1 + θ)m, (12)

δ
dv

dt
= aw(1− v)− v, (13)

s+ i+ h+ η(1 + ε)x = 1, w = i+ h− νm. (14)

Using the estimates µ = 0.02, d = 12, γ = 0.08, σ = 1, and φ = 2, all in inverse
years, we can estimate the first four dimensionless parameters as

δ ≈ 0.008, ε ≈ 0.02, θ ≈ 0.05, η ≈ 0.1. (15)

The parameters a and b are order 1 and can be estimated from known endemic
fractions of infected humans and flies in the absence of ivermectin treatment (see
Section 4). We will examine asymptotic limits as ε, θ, and η go to 0 as needed. For
now, we assume

δ → 0, (16)

which makes the vector equation (13) quasi-steady, yielding the algebraic equation

v =
aw

1 + aw
. (17)

The final model, consisting of differential equations (9)–(12) along with algebraic
equations (14) and (17), is an SEIPMS infectious disease model with nonlinear
incidence.

The error in taking δ → 0 is significant only on a very short time scale. Simulation
results in Figure 3 verify this claim in the case where a small number of infective
humans seed a region where the disease was previously absent. The plot of Figure 3a
includes both the solution of the full model ((9)–(14), solid curve) and the simplified
model with the quasi-steady approximation for the vector equation ((17) instead
of (13), dash-dot); there is no visible difference. In both cases, the numbers of
infective humans and flies gradually increase over a five-year period to their stable
no-treatment values, with the greatest increase coming between 1 and 3 years. To
highlight the actual difference, Figure 3b shows the solution on a much shorter
time scale. The infective vector population rises from 0 to 0.01 (1% of the total fly
population) in the first two days, while the quasi-steady approximation jumps to
that level instantly. This is the extent of the error caused by the approximation.

2.2. Equilibria and Stability. The system (9)–(12), (14), and (17) always has a
disease-free equilibrium in which s = 1 and all other variables are 0. Any endemic
disease equilibria must satisfy the equations

i = qx, h = px, m =
p

1 + θ
x, s = 1− (1 + ζ)x, w = ρx, (18)

where

ρ ≡ 1− νp

1 + θ
, ζ = η(1 + ε), (19)
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Figure 3. Simulation of the introduction of a small population of
human infectives into a previously unexposed population, showing
E/N , V/F , S/N , and I/N (from the bottom up at 5 years), using
a = 0.9, b = 2.5, η = 0.1, ε = 0, p = 0, with solid for δ = 0.001 and
dash-dot for δ = 0.

which follow immediately from (10)–(12) and (14). This leaves the algebraic system

bsv = x, v =
ρax

1 + ρax
(20)

for v and x. Assuming v, x > 0, these equations can be rewritten as

v−1 = bx−1 − (1 + ζ)b, (21)

v−1 = (ρa)−1x−1 + 1, (22)

and then elimination of v yields the result

x =
1−R−10

1 + b−1 + (1 + ε)η
, provided R0 > 1, (23)

where

R0 = ρab (24)

is the basic reproductive number.
We can interpret R0 as the product of the number of secondary human infections

per infective fly (b) and the number of secondary fly infections per infected human
(ρa), where ρ < 1 is a weighted average of the relative infectivity for the classes I,
P , and M as compared to the infectivity of class I.

The stability of the equilibria is determined by the Jacobian matrix, which is

J =


−η−1Q1 η−1Q3 η−1Q3 −η−1νQ2

q −1 0 0
p 0 −1 0
0 0 θ−1 −θ−1 − 1

 ,
where

Q1 = 1 + ηbv, Q2 = bs
dv

dw
=

abs

(1 + aw)2
, Q3 = Q2 − bv. (25)
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The characteristic polynomial can then be written as

P4(λ) = (λ+ 1)P3(λ) (26)

where

P3(λ) = (λ+η−1Q1)(λ+θ−1 +1)(λ+1)−η−1Q3(λ+θ−1 +1)+η−1θ−1νpQ2. (27)

The stability of the equilibria can then be determined from P3 by the Routh-Hurwitz
conditions c1 > 0, c3 > 0, and c1c2 > c3, where cj is the coefficient of λ3−j [12].
Here

c1 = (θ−1 + 1) + (η−1Q1 + 1) > 0,

c2 = η−1(Q1 + bv) + [(θ−1 + 1)(η−1Q1 + 1)− η−1Q2]

> η−1(Q1 + bv) + η−1(θ−1 + 1)Q1 − η−1Q2],

c3 = η−1(θ−1 + 1)(Q1 + bv − ρQ2),

and

c1c2 > η−1(θ−1 + 1)(Q1 + bv) + c1η
−1[(θ−1 + 1)Q1 −Q2].

These calculations leave a primary stability criterion (from c3 > 0) of

ρQ2 < Q1 + bv. (28)

Given the bound ρ(θ−1 + 1) = 1 + θ−1(1− νp) > 1 from (19), the inequality

ρQ2 < Q1 (29)

is sufficient for the other remaining criterion (from c1c2 > c3).
The disease-free equilibrium has

Q1 = 1, Q2 = ab, v = 0,

so both stability criteria become

R0 = ρab < 1,

confirming that the disease-free equilibrium is stable when R0 < 1 and unstable
when R0 > 1. The endemic disease equilibrium has

ρQ2 =
ρabs

(1 + aw)2
=

ρa

(1 + aw)2
x

v
=

1

1 + aw
< 1 < Q1,

so both criteria are always satisfied, provided that the existence requirement R0 > 1
is met.

Proposition 1 summarizes the results.

Proposition 1.
The SEIPMS model given by (9)–(12), (14), (17) has

1. a disease-free equilibrium that is stable whenever R0 < 1 (24), and
2. a stable endemic disease equilibrium given by (23) and (18) whenever R0 > 1.
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3. A Pulsed Model. The general pulsed model follows from two changes to the
SEIPMS model of Section 2:

1. Set φ = 0 because delivery of health care occurs only at fixed intervals;
2. Introduce a jump condition at times nτ , where τ is the scaled treatment

interval (typically 0.1 or 0.05, corresponding to treatment intervals of 1 year
or 6 months with a time scale of 10 years). At these points in time, all
individuals in the premedicated class become medicated, which means m = h.

Thus, the model (using the δ → 0 and ε = 0 approximations) is

η
dx

dt
= bsv − x, x+ = x− at t = nτ, (30)

di

dt
= qx− i, i+ = i− at t = nτ, (31)

dh

dt
= px− h, h+ = h− at t = nτ, (32)

dm

dt
= −m, m+ = h− at t = nτ, (33)

s = 1− i− h− ηx, v =
aw

1 + aw
, w = i+ h− νm. (34)

The system can be simplified somewhat by introducing variables y, z, and r to
replace h, i, and m and rescaling time to match the treatment interval:

y = p−1h, z = i− qy, r = p−1m, t∗ =
t

τ
, ξ =

τ

η
. (35)

The problem for z is then

dz

dt∗
= −τz, z+ = z− at t∗ = n,

which can be solved immediately, reducing the system to

dx

dt∗
= ξ(bsv − x), x+ = x− at t∗ = n, (36)

dy

dt∗
= τ(x− y), y+ = y− at t∗ = n, (37)

dr

dt∗
= −τr, r+ = y− at t∗ = n, (38)

s = 1− y − z − ηx, v =
aw

1 + aw
, w = y + z − νpr, z = z(0)e−τt

∗
. (39)

3.1. Periodic Solutions. Periodic solutions are defined by the differential equa-
tions of (36–38) along with the periodic conditions

x(0) = x(1), y(0) = y(1), r(0) = y(1) (40)

and the auxiliary equations of (39). Clearly any periodic solution must have z = 0,
and we can solve the r equation analytically; thus, we can recast the problem as
that of finding initial conditions (xi, yi) such that the solution of the system defined
by

dx

dt
= ξ[bsv − x], x(0) = xi, (41)

dy

dt
= τ(x− y), y(0) = yi, (42)

where
s = 1− y, w = y − yiνpe−τt, v =

w

a−1 + w
, (43)
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satisfies the periodicity conditions

x(1) = x(0), y(1) = y(0). (44)

Obviously there is a disease-free periodic solution with x0 = y0 = 0. Numerical
solutions can in principle be found by solving (44); in practice, this system is difficult
to work with because the presence of the small parameter τ in (42) makes y very
nearly constant. As an alternative, we can derive another periodicity condition by
combining (41) and (42) into a single equation

ξ−1
dx

dt
+ τ−1

dy

dt
= bsv − y;

integration over the interval [0, 1] then yields the condition∫ 1

0

bsv dt =

∫ 1

0

y dt. (45)

Our numerical scheme implements this condition by adding initial value problem
components

dF

dt
= bsv, F (0) = 0;

dY

dt
= y, Y (0) = 0; (46)

whence we can compute the correct initial conditions (xi, yi) from

x(1) = x(0), F (1) = Y (1). (47)

Figure 4 shows some periodic solutions using typical parameter values. The
variation over the treatment interval is seen primarily in the exposed populations
and not the infective population. The principal driver of this behavior is the sudden
drop in infectivity from human to fly each time treatment occurs. This creates
a noticeable decrease in the infected fly population, which decreases the rate at
which susceptible humans become infected; meanwhile, the rate at which exposed
humans become infective changes only slightly during the period. The result is a
decline in the exposed population in the first portion of the treatment interval. The
subsequent rise is due to the fact that individuals who become infective during the
interval between treatments are not medicated and hence more infective to the flies.

3.2. Asymptotic Approximation. It is also possible to compute asymptotic ap-
proximations for periodic solutions by using the asymptotic assumptions

x(t; τ) = x0 + τx1(t) +O(τ2), y(t; τ) = y0 + τy1 +O(τ2). (48)

It is not immediately obvious that x0 and y1 are constants. The first of these follows
from

x′0(t) = ξbs0v0 − ξx0(t), s0 = 1− y0, v0 =
(1− νp)y0

a−1 + (1− νp)y0
;

because periodicity along with s0 and v0 being constant results in the solution

x0 = bs0v0.

The condition F (1) = Y (1) along with this last result means

y′1 = x0 − y0 = bs0v0 − bs0v0 = 0,

establishing that y1 is also constant. The solution of bs0v0 = y0 yields the results

w0 =
b(1− νp)− a−1

b+ 1
, y0 =

w0

1− νp
, s0 = 1− y0, v0 =

w0

a−1 + w0
. (49)
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Figure 4. Periodic solutions for the exposed (x, dashed) and total
infective (h+ i = x+y, solid) classes, with treatment intervals of 2
years (top), 1 year (middle), and 6 months (bottom), using a = 1,
b = 4, η = 0.1, ε = 0, νp = 0.6.

Substitution of (48b) and bs0v0 = y0 into (47b), along with the additional definitions

K =
1− v0

a−1 + w0
, f10 = b[(1− νp)s0K − v0], f11 = bνpy0s0K, (50)

yield the result

y1 =
f11

2(1− f10)
. (51)

The solution of x′1 = ξ(bs1v1 − x1) with periodicity in x1 yields the final result

x1(t) = f10y1 −
f11
ξ

+ f11t+
f11e

−ξt

1− e−ξ
. (52)

Details of these calculations appear in the Appendix.

3.3. A Necessary Condition for an Endemic Disease Equilibrium. If we
begin with a set of parameters that yields an endemic disease equilibrium and grad-
ually make the parameters less favorable, the solutions of the fixed point equations
(44) gradually converge to (x0, y0) = (0, 0). Hence, the critical case can be thought
of as corresponding to the limit of the periodic solution problem as y0 → 0 with
x0 = O(y0). We can identify the bifurcation hypersurface by assuming

(x, y, x0, x1, y1) = (y0X, y0Y, y0X0, y0X1, y0Y1) (53)

in (41–44) and taking the asymptotic limit y0 → 0 resulting in the problem

dX

dt∗
= −ξX + ξabY − ξabνpe−τt

∗
, X(1) = X(0), (54)

dY

dt∗
= τX − τY, Y (0) = Y (1) = 1. (55)

With three boundary conditions for a system of two differential equations, this
problem is overspecified and will have a solution only for a particular relationship
among the parameters.
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Letting UT = [X Y ], the system can be written in vector form as

dU

dt∗
=

[
−ξ ξab
τ −τ

]
U +

[
ξab
0

]
νpe−τt

∗
. (56)

The eigenvalues of the matrix in (56) are given by

λ1,2 =
−(ξ + τ)±

√
ξ2 + (4ab− 2)ξτ + τ2

2
, (57)

which are real for the case where the disease is endemic in the absence of treatment
(ab > 1). Given a treatment interval that is much shorter than the lifespan of adult
worms, we expect τ to be small (τ ≈ 0.1 for annual treatment); hence, we write the
eigenvectors as

u1 =

[
u1
1

]
, u2 =

[
u2
τ

]
where u1 =

λ1 + τ

τ
, u2 = λ2 + τ. (58)

With this notation, the solution of the system of differential equations is

X = c1u1e
λ1t

∗
+ c2u2e

λ2t
∗
, (59)

Y = c1e
λ1t

∗
+ c2τe

λ2t
∗

+ νpe−τt
∗
. (60)

The three boundary conditions yield a linear system for unknowns c1, c2, and νp,
leading to the necessary condition (for existence of an endemic periodic solution)

νp <
(τu1 − u2)

(
eλ1 − 1

) (
1− eλ2

)
τu1 (eλ1 − 1) (e−τ − eλ2)− u2 (eλ1 − e−τ ) (1− eλ2)

. (61)

Asymptotic expansion of this result (included in the Appendix) yields the ap-
proximate condition

νp <

(
1− 1

ab

)(
1 +

τ

2

)
+O(τ2), (62)

which can be rearranged as

R0 = ab

(
1− νp

1 + τ/2
+O(τ2)

)
> 1. (63)

The quantity on the left side of this inequality is the basic reproductive number for
the continuous model (τ/2 is the mean dimensionless time a newly infective person
must wait for initial treatment, which was defined as θ in Section 2).

3.4. Stability of the Disease-Free Solution. Consider the case where there is
a small perturbation to the disease-free solution owing to a small non-zero initial
value z(0) = z0, corresponding to the introduction of a small number of unmedicated
infectives. We assume

(x, y, r, z) = (z0X, z0Y, z0R, z0Z)

and define sequences

Xn = X(nτ), Yn = Y (nτ), Zn = Z(nτ) = e−nτ , Kn = νpYn − Zn,

along with a shifted time variable on the interval nτ < t∗ < (n+ 1)τ :

t∗ = nτ + t̂.
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With the solution R(t̂) = Yne
−τ t̂, we obtain a recursive definition of the sequences

Xn and Yn through the system

dX

dt̂
= −ξX + ξabY − ξabKne

−τ t̂, X(0) = Xn, X(1) = Xn+1, (64)

dY

dt̂
= τX − τY, Y (0) = Yn, Y (1) = Yn+1. (65)

The eigenvalues and eigenvectors are again given by (57) and (58), leading to the
solutions

X = c1u1e
λ1 t̂ + c2u2e

λ2 t̂, (66)

Y = c1e
λ1 t̂ + c2τe

λ2 t̂ +Kne
−τ t̂, (67)

where

c1 =
τXn − (1− νp)u2Yn − u2Zn

τu1 − u2
, c2 =

−Xn + (1− νp)u1Yn + u1Zn
τu1 − u2

. (68)

Evaluating these solutions at t̂ = 1 yields a system of difference equations having
the form

Un+1 = AUn + Znb.

Since limn→∞ Zn = 0, the solution vector for this system decays to 0 if the
eigenvalues of A have magnitude less than 1, which we can determine directly from
the matrix entries

a11 =
τu1e

λ1 − u2eλ2

τu1 − u2
, a12 = −(1− νp)u1u2

eλ1 − eλ2

τu1 − u2
, (69)

a21 = τ
eλ1 − eλ2

τu1 − u2
, a22 = (1− νp)τu1e

λ2 − u2eλ1

τu1 − u2
+ νpe−τ (70)

using the Jury conditions[9]

|trA| − 1 < detA < 1. (71)

With τ → 0, we can quickly see that

A ∼
[

e−ξ O(1)
O(τ) 1

]
,

from which it is clear that the trace is positive and the determinant is less than 1;
hence, the only condition that needs to be satisfied is

trA− 1 < detA. (72)

Computing and simplifying the trace and determinant yields the inequality(
eλ1 + eλ2 − 1

)
+ νpe−τ − νpτu1e

λ2 − u2eλ1

τu1 − u2

< (1− νp)eλ1+λ2 + νp
τu1e

λ1−τ − u2eλ2−τ

τu1 − u2
.

Multiplying this inequality by the positive quantity τu1− u2 and rearranging leads
ultimately to the condition

νp >
(τu1 − u2)

(
eλ1 − 1

) (
1− eλ2

)
τu1 (eλ1 − 1) (e−τ − eλ2)− u2 (eλ1 − e−τ ) (1− eλ2)

, (73)

which is just the reverse of the inequality needed for existence of the endemic peri-
odic solution.
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Proposition 2 summarizes the results of the pulsed model.

Proposition 2.
In the limit η → 0, the disease-free periodic solution is unique and stable whenever

νp >
(τu1 − u2)

(
eλ1 − 1

) (
1− eλ2

)
τu1 (eλ1 − 1) (e−τ − eλ2)− u2 (eλ1 − e−τ ) (1− eλ2)

.

When the inequality is reversed, the disease-free periodic solution is unstable and an
endemic disease periodic solution can be found numerically by solving the algebraic
equations (47) applied to the system (41), (42), (46). In the limit as τ → 0, the
inequality reduces to

R0 = ab

(
1− νp

1 + τ/2
+O(τ2)

)
< 1.

4. Results and Discussion.
The value of asymptotics. Asymptotic approximation can sometimes simplify
the analysis of a model without making an appreciable change in the results. This
is most clearly seen in Figure 3, where the error caused by the quasi-steady as-
sumption that changes the model from a vector-borne disease with linear incidence
to an infectious disease with nonlinear incidence is only visible for the first two
days of a disease introduction scenario. The duration of the period for which the
initial transient is important depends primarily on the time scale of the differential
equation being approximated. This time scale is just 30 days in the onchocerciasis
model, so we should not expect a transient duration to be any longer than that. In
this particular model, it turns out to be smaller yet. The extent of the imbalance
between the initial conditions of the experiment and the equilibrium solution does
not make much difference. For example, a similar experiment with double the initial
load of human infectives shows a transient of the same duration.

Asymptotics also has a clear value in characterizing solutions, as for example
in the analytical result for the periodic solutions of the pulsed model in the limit
τ → 0. While the value in this case is modest, there are examples where asymptotic
analysis can provide a detailed explanation of complex behavior (see [11] for an
example).
Using an analytical model in lieu of a complex simulation. Modeling of on-
chocerciasis has generally been done using complex simulations such as ONCHOSIM
and EpiOncho. One would expect that more detail would provide better results than
a simplified model such as ours. This is true in theory, but in practice it is only
true if the processes are very well understood and the parameter values are known
to a modest degree of accuracy. Here there is ample reason for caution. The dif-
ferent simulation packages do not produce the same predictions, and some of these
predictions have not borne out well in practice [4]. Simpler analytical models can
be thought of as sacrificing precision for accuracy, insofar as they can be used to
determine a range of reasonable results and the results are robust to changes in
parameter values. Of course the accuracy of this range depends on the specific
simplifications in the analytical model.

Our model has one major omission, which is that we assume that the expected
duration of the onchocerciasis infection in humans is the same as the expected
lifespan of the adult worm. This is not true if new onchocerca larvae can establish
themselves in a human who is already infected from an earlier time. Reintroduction
of larvae into an infective human would reset the 12-year timer for clearance of the
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disease, resulting in a much smaller expected clearance rate. This omission makes
our model more optimistic about the conditions needed for local eradication of the
disease from any given population. Our results are not so much a projection of
what will happen with a particular treatment plan as they are a best case scenario
for what could happen with that plan.

Another simplification in our model of onchocerciasis is our assumption that
the effect of treatment is to lower the infectivity of humans to flies by a fixed
fraction ν. There is a considerable amount of literature showing that this is not
the case; instead, the mean infectivity of humans drops to near 0 when the dose
of ivermectin is administered but then rises to a level somewhat less than that of
untreated patients but still significant. In theory, there should be a particular mean
value of infectivity loss ν for any treatment protocol, but the best value for ν should
depend on the frequency with which the medication is administered. This could
be determined by the overall treatment interval (as represented by τ in the pulsed
model and θ = τ/2 in the continuous model) if doses are only administered during
the periodic visits by the medical community, but it could also be independent of
the frequency of medical visits if it is possible to have permanent members of the
population arrange for doses to be administered at any interval prescribed by the
treatment plan. These considerations affect the choice of ν for investigations with
the model, but the idea of using a fixed value of ν in lieu of a complex simulation
is valid in any case.
Using the continuous model in lieu of the pulsed model. In practice, the
treatment protocol for onchocerciasis leads to the pulsed model. As we would
predict, the continuous model slightly underestimates the numbers of infectives
compared to the pulsed model (see Figure 5), which increases the extent to which
the model results are overly optimistic. However, the intervals between treatment
events are short compared to the time required for a patient to be cleared of the
disease (τ � 1), which means that the results for the continuous model are only
slightly better than those of the pulsed model. Certainly the difference between the
continuous and pulsed models is small compared to the errors caused by uncertainty
in parameter values. Given these considerations, we use the continuous model in
the subsequent discussion of our model projections.
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Figure 5. Time average infective populations, with a = 0.9, b = 3,
η = 0.1, ε = 0, νp = 0.6. Humans: top 2; Flies: bottom 2; Pulsed:
solid; Continuous: dashed.
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The prognosis for onchocerciasis treatment plans. Since the parameters a
and b need to be inferred from the pre-treatment equilibrium, it is reasonable to
cast the result for R0 in terms of v0 and i0 instead of a and b. Noting that i = x
and ρ = 1 for the pre-treatment scenario, (20b) and (23) can be rewritten as

1 + ai0 =
1

1− v0
, 1− 1

ab
= (1 + η + εη)i0 +

ai0
ab
,

which we can combine together to get

ab =
1

(1− v0)[1− (1 + η + εη)i0]
.

The condition for a basic reproductive number R0 < 1 is then

1− νp

1 + θ
= ρ <

1

ab
= (1− v0)[1− (1 + η + εη)i0],

or

νp > (1 + θ){1− (1− v0)[1− (1 + η + εη)i0]}. (74)

Using estimated parameter values i0 = 0.46 and v0 = 0.30 [10], this means that
eradication would require νp ≈ 0.69. This is problematic, as the generally accepted
treatment fraction is only p = 0.65 [1]. With an optimistic value of 0.9 for ν,
achievable if treatment is more frequent than in the current protocol, a compliance
rate higher than p = 0.76 would be required. This might be possible, but it would be
difficult to achieve since there are people who cannot be given ivermectin treatment,
such as pregnant women and children under the age of 5.

Even if R0 can be brought below 1, the eradication dynamics is unacceptably
slow. Figure 6 shows the results of simulations using a = 0.9 with optimistic and
pessimistic values for b and νp. The combination of a = 0.9 and b = 3 yields a
pre-treatment equilibrium of 44% human infectivity and 28% fly infectivity, which
is not quite as much as the reported values given above. The lowest curve in each
plot is for the optimistic choices b = 2 and νp = 0.8, corresponding to R0 = 0.43.
It takes about 60 years in this scenario for the infective populations of humans and
flies to be decreased to 10% of their initial values. These disappointing results are
due to two key factors:

1. Ivermectin does not kill adult worms, so the expected value of the time needed
to eradicate the disease from an individual human host is still half the lifespan
of the adult worms, which is about 6 years.

2. Even with optimistic projections for microfilaria suppression and fraction of
humans who get treated, the expected transmission rate from an individual
human to the black fly population is still 20% of the untreated value.

While our model is overly simple, it should be able to provide an overestimate
of the efficacy of onchocerciasis treatment simply by choosing an optimistic value
of νp; thus, the results strongly suggest that the current eradication plan is inad-
equate. The problem cannot be fixed simply by improving parameter values such
as the treatment fraction. The more significant reason for the poor results is that
ivermectin targets the parasite at the least critical point in its life cycle. From
a mathematical point of view, we should apply a treatment plan that targets the
adult worms because this would shorten the expected value of the longest time scale.
While this might not have a larger effect on the basic reproductive number, it would
speed up the approach to the disease-free equilibrium by changing the time scale of
that approach.
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Figure 6. Simulations of various treatment scenarios, with a =
0.9, η = 0.1, ε = 0.
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. Appendix: Asymptotics for the Pulsed Model.

A.1. Periodic solutions as τ → 0. This subsection shows the calculations neces-
sary to obtain the approximations (51) and (52),

y1 =
f11

2(1− f10)
, x1(t) = f10y1 −

f11
ξ

+ f11t+
f11e

−ξt

1− e−ξ
,

where

K =
1− v0

a−1 + w0
, f10 = b[(1− νp)s0K − v0], f11 = bνpy0s0K.

We begin by defining f = bsv and assuming the asymptotic expansions

w ∼ w0 + τw1,w1 = w10y1 + w11t

v ∼ v0 + τv1, v1 = v10y1 + v11t

f ∼ f0 + τf1, f1 = f10y1 + f11t

The periodicity condition (47b) reduces to
∫ 1

0
f1(t) dt = y1, which immediately

yields (51). Similarly, the result given for x1 satisfies the differential equation
x′1 = ξ(f1 − x1) along with the periodicity condition x1(1) = x1(0). It remains
to show that the formulas for f10 and f11 are correct. Expanding w yields

w = y − νpyie−τt ∼ y[1− νp(1− τt)], (A)

whence

w10 = 1− νp, w11 = νpy0. (B)

The equation v = w/(a−1 + w) can be written as

(v0 + τv1)(a−1 + w0 + τw1) = w0 + τw1,

from which we eventually obtain

v10 = (1− νp)K, v11 = νpy0K. (C)

The results for f10 and f11 then follow from

f ∼ b(s0 − τy1)[v0 + τ(v10y1 + v11t)]. (D)

A.2. Existence condition for a nontrivial periodic solution. This subsection
shows the calculations necessary to obtain the approximation (62)

νp <

(
1− 1

ab

)(
1 +

τ

2

)
+O(τ2),

from the original result (61)

νp <
(τu1 − u2)

(
eλ1 − 1

) (
1− eλ2

)
τu1 (eλ1 − 1) (e−τ − eλ2)− u2 (eλ1 − e−τ ) (1− eλ2)

.

1. We begin by rewriting the original result as

P =

(
eλ1 − 1

) (
1− τu1

u2

)
(eλ1 − e−τ )− τu1

u2
(eλ1 − 1) e

−τ−eλ2

1−eλ2

=
eλ1 − 1

eλ1 − e−τ
·

1− τu1

u2

1− τu1

u2
· eλ1−1
eλ1−e−τ · e

−τ−eλ2

1−eλ2

.

(E)
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2. The eigenvalue λ2 ∼ −ξ = O(1) as τ → 0; hence, the last factor in the
denominator can be expanded as

e−τ − eλ2

1− eλ2
∼ 1 +O(τ)

and u2 = λ2 + τ ∼ −ξ. We then have

P ∼ eλ1 − 1

eλ1 − e−τ
· 1 + ξ−1τu1 +O(τ2)

1 + ξ−1τu1 · eλ1−1
eλ1−e−τ +O(τ2)

. (F)

3. The eigenvalue λ1 is O(τ) as τ → 0; hence, the other ratio of exponential
functions can be expanded as

eλ1 − 1

eλ1 − e−τ
∼

λ1 + 1
2λ

2
1 +O(τ3)(

λ1 + 1
2λ

2
1

)
−
(
−τ + 1

2τ
2
) =

λ1 + 1
2λ

2
1 +O(τ3)

(λ1 + τ) + 1
2 (λ21 − τ2)

=
λ1

λ1 + τ
·

1 + 1
2λ1 +O(τ2)

1 + 1
2 (λ1 − τ)

∼ λ1
λ1 + τ

·
(

1 +
1

2
λ1 +O(τ2)

)(
1− 1

2
(λ1 − τ)

)
∼ λ1
λ1 + τ

·
(

1 +
τ

2
+O(τ2)

)
.

Substituting this result into (F) yields

P ∼ λ1
λ1 + τ

·
(

1 +
τ

2
+O(τ2)

)
· 1 + ξ−1τu1 +O(τ2)

1 + ξ−1τu1 · λ1

λ1+τ
+O(τ2)

. (G)

4. The denominator in the last factor of (G) can be expanded as a geometric
series, yielding

P ∼ λ1
λ1 + τ

·
(

1 +
τ

2
+O(τ2)

)
·
(

1 + ξ−1τu1 ·
τ

λ1 + τ
+O(τ2)

)
;

since τu1 = λ1 + τ , we have

P ∼ λ1
λ1 + τ

·
(

1 +
τ

2
+O(τ2)

)
·
(
1 + ξ−1τ +O(τ2)

)
. (H)

5. Expansion of the formula for λ1 yields the results

λ1 ∼ (ab− 1)τ [1− abξ−1τ +O(τ2)], λ1 + τ ∼ abτ [1− (ab− 1)ξ−1τ +O(τ2)],

so
λ1

λ1 + τ
∼ ab− 1

ab
· [1− abξ−1τ +O(τ2)] · [1 + (ab− 1)ξ−1τ +O(τ2)]

∼
(

1− 1

ab

)
[1− ξ−1τ +O(τ2)].

Substituting this last result into (H) yields the desired final result

P ∼
(

1− 1

ab

)(
1 +

τ

2

)
+O(τ2). (I)
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