
An Overview of Queueing Theory

A queue is any system that can be thought of as a sequence of customers arriving at a service
installation and receiving service. A great variety of real scenarios fit this broad description, including
telephone call centers, fast food restaurants, court dockets, medical practice schedules, and mainte-
nance operations in factories. Queueing theory seeks to tie the observable properties of a system to the
properties that characterize the process that generate new customers and the process that describes
the service completion times. As such, it does not necessarily involve a decision, as is the case for
most topics in operations research. However, as a practical matter one would likely initiate a queueing
theory study only with the intention of using the results to inform a decision. We’ll see that queueing-
based decisions require models that consist of a pure queueing theory component (Sections 1–5) along
with a component that associates the emergent properties of the system with a cost or value (Section
6).

Structure of Queueing Models

In general, there are a number of features that must be identified in order to specify a queueing
system model. The principal unknowns in the model are determined by some analytical method or
simulation, and then these principal unknowns are used to calculate the important emergent properties
of the queueing system.

Model Specification

The state of a queueing system at any time is the number of customers in the system, including
customers being served as well as customers waiting for service. Any particular queueing system is
specified by assumptions about the process by which customers arrive, the service process, and any
special restrictions on the queue itself.

• Customers arrive according to some random process characterized by a probability distribution
of arrival times. The arrival time distribution is almost always taken to be exponential, which
is generally a good assumption. The primary quantitative property is the mean arrival rate λ,
measured in customers per convenient time unit. Usually the population of potential customers
is taken to be infinite, although in some cases it is necessary to indicate a finite calling population
size.

• The service station houses one or more servers, which are generally considered to be identical.
The service process is characterized by a distribution of service times with mean µ for each server.
One should always do an observational study to obtain an empirical service time distribution
before deciding what distribution to use in the model. Often the service process is taken for
mathematical convenience to be exponential, but that is generally not a good assumption, and
one must always consider whether the simplicity of exponential distribution models justifies the
potential error caused by using them in place of a more realistic choice.

• Usually the queue itself is assumed to be unlimited, although in practice it is likely that customers
will balk (leave the system without receiving service) if the line is too large or the wait is too
long. It is assumed that servers are busy whenever there are enough customers, so that the
number of customers being served at any time is the smaller of the number of customers in the
system (n) and the number of servers (s).
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There is a standard descriptive system for queueing systems. Systems with an infinite calling
population and no limit on queue length are classified by a system of the form “A/S/s,” where A
indicates the type of distribution for arrival times, S indicates the type of distribution for service
times, and s is the number of identical servers in the system. Common choices for A and S are

• M - Markovian (exponential)

• D - degenerate (constant)

• Ek - Erlang (a generalization of the exponential distribution)

• G - general (no specific distribution type)

The arrival and service distributions always have a specified mean rate (λ and µ). Erlang distributions
require an additional shape factor k and formulas that apply to general distributions require a standard
deviation σ.

Model Equations

Since arrivals are unscheduled, the state of a queueing system changes in time. While it is not possible
to predict the state of the system at some future time, it is possible to predict some aggregate properties
of the system, such as the average state over time. The principle unknowns in a queueing model are
the probabilities Pn(t) that the system is in state n at time t. For the special case where the arrival
and service distribution times are exponential, we can write down a set of differential equations that
govern the changes in the probabilities Pn. Most queueing studies only consider the steady-state case,
in which the probabilities are constants Pn. The steady-state versions of the differential equations
allow for each Pn to be determined in terms of the previous one, so that ultimately they are all given
as multiples of P0. The correct value of P0 then follows from the requirement that the sum of the
probabilities is 1. When the probability distributions are not both exponential, then the probabilities
can only be determined by simulation.

Emergent System Properties

Usually we are not actually interested in the probabilities Pn. Instead, we use them to determine
emergent system properties of general interest. Chief among these are L, the average number of
customers in the system, Lq, the average number of customers waiting to be served, W , the average
amount of time customers spend in the system, and Wq, the average amount of time customers spend
waiting for service to begin. Sometimes the underlying probability distribution of waiting times is also
important.

Analysis of Queueing Models

The method of analysis for queueing models depends on the nature of the model.

1. When both the arrival times and the service times are exponentially distributed, the steady-state
system properties can usually be determined analytically (Sections 3–4). Unfortunately, service
times are generally not exponentially distributed; however, results for this case are often a good
approximation of a more realistic case.

2. Some analytical results are available for arbitrary service time distributions, provided there is
only one server. (Section 2)
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3. In general, steady-state properties must be determined by simulation.

4. Transient properties always need to be determined by simulation.

Using Queueing Theory to Make Decisions

A decision problem (of any kind) has four components:

1. A set of decision variables, which can be chosen from some continuous or discrete set of
options;

2. A set of parameters, which have values that cannot be controlled;

3. An objective function, which defines the quantity to be maximized (value) or minimized (cost);

4. A mathematical model that defines the quantities needed to compute the objective function in
terms of the decision variables and parameters.

In queueing theory, it is usually possible to make choices in the number of servers s, and it may
also be possible to make choices that modify the mean arrival rate λ and the mean single-server
service rate µ, possibly in terms of other parameters. The objective function is usually a total cost
that includes both the direct cost of operating the system and indirect costs, such as the cost of
losing customers to faster competitors. Increasing s or µ or decreasing λ increase the direct cost
while decreasing the indirect cost. Usually service increases become progressively more expensive
while yielding progressively less decrease in indirect cost; hence, there will be an optimal strategy that
minimizes total cost.

The required mathematical model has two components. First, an appropriate queueing model
determines the key output quantities, such as the distribution of waiting times and the expected
queue size. Second, a cost model associates these output characteristics with the indirect costs and
prescribes the direct costs in terms of the decision varibles. Because the number of decision variables
is generally small, there is usually no difficulty in determining the optimal solution once the results of
the queueing model are known. In general, an optimal strategy is only as good as the quality of the
model from which it is obtained, so practitioners of queueing theory need to be careful in modeling
the objective function as well as the queueing system.
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