
Singular Perturbation

1 A Model First-Order Problem

εv′ + v = g(t), y(0) = 0,

where g is smooth, g(0) 6= 0, and g′(0) 6= 0

Synopsis
We begin with an example of this class of problems, in which we will see that the regular

perturbation method does not work, find the exact solution, obtain two expansions of the correct
solution for different scalings of time, and describe a perturbation method for obtaining these
expansions directly from the original problem. We’ll then apply the new method to the more
general model problem.

1.1 An Example

εv′ + v = e−kt, v(0) = 0.

Regular Perturbation Solution
Suppose we look for an approximation

v(t; ε) ∼ v0(t) + εv1(t) +O(ε2).

This assumption gives us the sequence of problems

v0 = e−kt, v0(0) = 0;

v1 = −v′0 = ke−kt, v1(0) = 0

and so on. Clearly these problems have no solution because the functions obtained from the
differential equation do not satisfy the initial conditions.

Exact Solution

v =
e−kt − e−t/ε

1− εk
.

This solution can be found by the integrating factor method or as a combination of a complemen-
tary and particular solution, with the particular solution from either undetermined coefficients or
variation of parameters.

Outer Expansion
If we expand the exact solution as ε → 0, the second term in the numerator is exponentially

small provided t = O(1), so the correct expansion is

v ∼ e−kt + εke−kt + ε2k2e−kt + · · ·+ EST, ε→ 0, t = O(1). (1)

This outer expansion is exactly what we would have got by naively applying the regular perturbation
method to the original problem and ignoring the initial condition. Regular perturbation does not
yield a correct approximation for the problem, but it does yield an approximation that is correct
for t bounded away from 0.
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Inner Expansion
The problem with the outer expansion is that it misses the rapid transient term e−t/ε, which is

necessary to satisfy the initial condition. If we want to see the effect of that term, we need to zoom
in on the point t = 0, which requires a rescaling of time so that t = O(ε). Rather than having two
small parameters (ε and t) in the expansion, we rescale the time with

t = ετ, τ = O(1).

The exact solution is then

v =
e−εkτ − e−τ

1− εk
.

Expanding as ε→ 0 with τ = O(1) yields the inner expansion

v ∼
(
1− e−τ

)
+ εk

(
1− τ − e−τ

)
+ ε2k2

(
1− τ +

1

2
τ2 − e−τ

)
, ε→ 0, τ = O(1). (2)

Note that this expansion satisfies the initial condition to all orders.

Summary
Having a small parameter ε in front of the highest order derivative means that the regular

perturbation problem is of lower order than the original problem; hence it cannot generally satisfy
the initial condition. It does yield an outer approximation that is valid for t = O(1). Rescaling the
time by t = ετ leads to an inner approximation that is only valid for t = O(ε) but does satisfy the
initial condition. Singular perturbation problems are characterized by having regimes with different
scalings of the independent variable rather than one uniform scaling.

The Singular Perturbation Method
The key idea of the singular perturbation method is that both the outer and inner approxi-

mations can be obtained directly from the original problem by applying the regular perturbation
method, provided the independent variable is appropriately scaled.

In the example, the original problem is given in the scaling for the outer region. Using regular
perturbation on the differential equation without considering the initial condition yields the outer
approximation (1).

For the inner region, we define an inner variable τ by t = ετ . Thinking of v as a function of τ
rather than t changes ε ddt to εdτdt

d
dτ = d

dτ . With τ in place of t, we get the inner problem

dv

dτ
+ v = e−εkτ , v(0) = 0.

Transcendental functions of ε must always be expanded, so the inner differential equation needs to
be rewritten as

dv

dτ
+ v = 1− εkτ +

1

2
ε2k2τ2 +O(τ3).

We can find the inner expansion by applying the regular perturbation method to the inner problem.
Assume

v ∼ V0(τ) + εV1(τ) + ε2V2(τ) +O(ε3).

We then have(
dV0
dτ

+ ε
dV1
dτ

+ ε2
dV2
dτ

)
+(V0+εV1+ε

2V2) = 1−εkτ+
1

2
ε2k2τ2+O(τ3), V0(0)+εV1(0)+ε2V2(0) = 0.
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The individual problems are
V ′0 + V0 = 1, V0(0) = 0,

V ′1 + V1 = −kτ, V1(0) = 0,

and

V ′2 + V2 =
1

2
ε2k2τ2, V2(0) = 0.

The solutions of these problems give the correct inner approximation (2).

1.2 The General Case

εv′ + v = g(t), v(0) = 0, (3)

where g is smooth, g(0) 6= 0, and g′(0) 6= 0

Outer Expansion from the Original Problem
Assume

v ∼ v0(t) + εv1(t) + ε2v2(t) +O(ε3).

Substituting this into the differential equation of (3) yields the results

v0 = g, v1 = −v′0 = −g′, v2 = −v′1 = g′′, · · · ,

for a complete outer expansion of

v ∼ g(t)− εg′(t) + ε2g′′(t) + · · · , ε→ 0, t = O(1). (4)

Inner Approximation from the Original Problem
The rescaling t = ετ changes the original problem to

dv

dτ
+ v = g(ετ) ∼ g(0) + εg′(0)τ +

1

2
ε2g′′(0)τ2 +O(ε3), v(0) = 0.

The form
v ∼ V0(τ) + εV1(τ) + ε2V2(τ) +O(ε3),

then yields the problems
V ′0 + V0 = g(0), V0(0) = 0,

V ′1 + V1 = g′(0)τ, V1(0) = 0,

V ′2 + V2 =
1

2
g′′(0)τ2, V2(0) = 0,

and so on, with solutions

V0 = g(0)(1− e−τ ), V1 = −g′(0)(1− τ − e−τ ), V2 = g′′(0)

(
1− τ +

1

2
τ2 − e−τ

)
.

The inner approximation is

v ∼ g(0)(1− e−τ )− εg′(0)(1− τ − e−τ ) + ε2g′′(0)

(
1− τ +

1

2
τ2 − e−τ

)
+O(ε3). (5)
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Exact Solution and Confirmation of Results
The exact solution is most easily found by the integrating factor method. Observe that the

complementary solution is vc = c1e
−t/ε. Let µ be the reciprocal of vc, omitting the integration

constant, so µ = et/ε. Differentiating the product µv and applying the differential equation yields

d

dt
et/εv(t) = et/εv′ +

1

ε
et/εv =

1

ε
et/ε(εv′ + v) =

1

ε
et/εg(t).

We can now integrate both sides from the initial condition to an arbitrary point, changing the
symbol used for the integration variable:

et/εv(t)− e0v(0) =

∫ t

0

1

ε
es/εg(s) ds,

or

v(t) =

∫ t

0

1

ε
e−(t−s)/εg(s) ds.

The substitution u = (t− s)/ε converts the integral into

v(t) =

∫ t/ε

0
e−ug(t− εu) du, (6)

from which we can obtain the outer approximation (4) by expanding g about t. To obtain the inner
approximation (5), we first rescale the exact solution as

v =

∫ τ

0
e−ug(ε[τ − u]) du = e−τ

∫ τ

0
esg(εs) ds (7)

and then expand g about 0.

2 A Nonlinear Example

Consider the problem
εy′ + y = ty3, y(0) = 1.

Outer Approximations
The leading order outer problem is

y0 = ty30,

which has three possible solutions:

y0 = 0, y0 =
1√
t
, y0 = − 1√

t
.

Normally we do not accept 0 as an approximate solution, but in this case y = 0 is an exact solution
of the differential equation, so it is a serious possibility. We’ll need something more to determine
which of these is correct.
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Inner Approximation
With rescaling, the inner problem is

dy

dτ
+ y = ετy3, y(0) = 1.

The substitution
y ∼ Y0(τ) + εY1(τ)

yields the leading order problem

Y ′0 + Y0 = 0, Y0(0) = 1,

with solution
Y0 = e−τ .

Then the O(ε) problem is

Y ′1 + Y1 = τY 3
0 = τe−3τ , Y1(0) = 0,

with solution

Y1 =
1

4
e−τ −

(
1

4
+

1

2
τ

)
e−3τ .

We have the inner approximation

y ∼ e−τ + ε

[
1

4
e−τ −

(
1

4
+

1

2
τ

)
e−3τ

]
, ε→ 0, τ = O(1).

Matching
The key to selecting the correct outer approximation is to realize that the outer and inner

approximations are for a single continuous function; hence, they cannot be completely unrelated.
The large τ and small t behaviors of the approximations should match. In this case, the inner
approximation vanishes as τ →∞, so the outer approximation must go to 0 as t→ 0. Thus, y = 0
is the correct outer approximation. In this example, only the inner approximation is needed.

This example gives us a first look at what will become a necessary complement to the outer
and inner approximations in most singular perturbation problems–asymptotic matching.

3 A Model Second-Order Initial Value Problem

εv′′ + v′ = g′(t), v(0) = 0, εv′(0) = 1, (8)

where g is smooth and g′(0) 6= 0. Without loss of generality we may assume g(0) = 1.

Outer and Inner Approximations from the Exact Solution
We can integrate the differential equation once and apply the initial conditions to obtain

εv′ + v = g(t), v(0) = 0.

This is problem (3), so we already have asymptotic approximations in the outer (4) and inner (5)
regions (but with g(0) = 1).
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The Outer Approximation by Regular Perturbation
The assumption v ∼ v0(t) + εv1(t) gives us the problems

v′0 = g′, v′1 = −v′′0 ,

with results
v0(t) = g(t) + C0, v1 = −g′(t) + C1. (9)

These results are consistent with the correct approximation (4), but they are not complete. How
do we get C0 = 0 and C1 = 0? This will require asymptotic matching after we have the inner
approximation.

The Inner Approximation by Regular Perturbation
Replacing t by t = ετ introduces a factor of ε−1 for each derivative. Multiplying through by ε,

we get the inner problem

d2v

dt2
+
dv

dt
= εg′(ετ) ∼ εg′(0) +O(ε2), v(0) = 0,

dv

dτ
(0) = 1. (10)

With v ∼ V0(τ) + εV1(τ), we get the problems

V ′′0 + V ′0 = 0, V0(0) = 0, V ′0(0) = 1

and
V ′′1 + V ′1 = g′(0), V1(0) = 0, V ′1(0) = 0,

with solutions
V0 = 1− e−τ , V1 = −g′(0)(1− τ − e−τ ), (11)

for the same asymptotic expansion (5) as before.

Leading Order Matching
We have leading order outer and inner approximations

v0 = g(t) + C0, V0 = 1− e−τ .

To match them, consider a simple thought experiment. Suppose an observer sitting in the outer
region looks toward the inner region. This outer observer is looking at V0 on the t = O(1) time scale,
but the inner approximation all takes place in the tiny t = O(ε) region, which is a mere dot to the
outer observer. What the outer observer sees is limτ→∞ V0 = 1. A second observer sits in the inner
region looking toward the outer region. This inner observer is looking at v0 on the t = O(ε) time
scale, but everything is impossibly far away. All that (s)he sees is limt→0 v0 = g(0) +C0 = 1 +C0.
This is our justification for the claim C0 = 0. The two observers are looking at the same continuous
function, so when they look toward each other they have to see the same thing. This is the leading
order matching principle:

• Suppose v ∼ v0(t) for t = O(1) and v ∼ V0(τ) for τ = O(1), where τ � t. Then

lim
t→0

v0(t) = lim
τ→∞

V0(τ).
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Higher Order Matching Using Van Dyke’s Principle
Notice that there is no limit as τ →∞ of V1. Leading order matching does not work except for

leading order. Instead we need a generalization of the basic principle that when the two observers
look at each other’s solutions, they should see the same thing. Suppose we have outer and inner
approximations up to some order εp, with p ≥ 0:1

v ∼ vO(t; ε) + o(εp), ε→ 0, t = O(1); v ∼ vI(τ ; ε) + o(εp), ε→ 0, t = O(ε).

In this notation, the ε after the semicolon indicates that the function is a power series in ε that
includes terms that are present with the given truncation order.

The outer observer is looking at vI on the t = O(1) time scale, which means vI(t/ε) rather than
vI(τ). But because the scaling has changed, some of the terms no longer meet the truncation order
requirements and others are nonlinear in ε. The outer observer actually sees only those terms in
vI(t/ε) which are present after any terms that are nonlinear in ε under the new scaling have been
expanded and less important terms removed. This process defines the outer expansion of the inner
approximation by

vI
(
t

ε
; ε

)
∼ vIO(t; ε) + o(εp).

Similarly, the inner observer looks at vO(ετ) and obtains the inner expansion of the outer
approximation by expanding with the original truncation order to get

vO (ετ ; ε) ∼ vOI(τ ; ε) + o(εp).

The expansions vIO and vOI are orginally calculated using different time scalings, but they must
agree, and this pins down the correct values of any previously undetermined integration constants.
In this example, the truncation order is ε, so

vI
(
t

ε

)
∼ (1− e−t/ε)− εg′(0)

(
1− t

ε
− e−t/ε

)
+ o(ε) ∼ 1 + g′(0)t− εg′(0) + o(ε),

which means
vIO = 1 + g′(0)t− εg′(0) = 1− εg′(0)(1− τ).

Similarly,

vO(ετ) ∼ g(ετ) + C0 + ε[−g′(ετ) + C1] + o(ε) ∼ [1 + ετg′(0) + C0] + ε[−g′(0) + C1] + o(ε),

which means
vOI = 1 + C0 − εg′(0)(1− τ) + εC1.

The asymptotic matching requirement forces C0 = C1 = 0.
The method we have developed here was first described in 1964 by Milton Van Dyke and is

known as Van Dyke’s Principle. The earlier intermediate variable method is more complicated.
Some authors who use the intermediate variable method mistakenly claim that Van Dyke’s Principle
does not always work. This is an unfortunate consequence of a subtle error in Van Dyke’s original
statement, which counted the number of terms rather than focusing on the truncation order. In
the form presented here, Van Dyke’s Principle is always correct.

1Note that the number of terms needed for vO and vI do not matter; it is only the truncation order that matters.
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4 A Model Boundary Value Problem

Consider the problem
εy′′ + y′ = f ′(x), y′(0) = 0, y(1) = 0, (12)

where f is smooth, f ′(0) 6= 0, and without loss of generality we may assume f(1) = 0. As with
the model initial value problem, the regular perturbation solution cannot satisfy the boundary
condition at x = 0. The outer region is where x = O(1), so the appropriate problem is

εy′′ + y′ = f ′(x), y(1) = 0.

The assumption y ∼ y0(t) + εy1(t) yields the problems

y′0 = f ′, y0(1) = 0,

y′1 = −y′′0 , y1(0) = 0,

with result
y ∼ f(x) + ε[f ′(1)− f ′(x)] + o(ε). (13)

Rescaling with x = εξ yields the inner problem

d2y

dξ2
+
dy

dξ
= εf ′(εξ) ∼ εf ′(0) +O(ε2),

dy

dξ
(0) = 0. (14)

Note that we do not include the boundary condition at x = 1 because it is at ξ →∞, which means
that information from that boundary condition must propagate through the outer region to the
inner region via the matching requirement. We can find a leading order boundary condition at
ξ →∞ using the leading order matching principle:

Y0(∞) = lim
ξ→∞

Y0(ξ) = lim
x→0

y0 = f(0);

hence, the inner problem reduces to

Y ′′0 + Y ′0 = 0, Y ′0(0) = 0, Y0(∞) = f(0),

with solution
Y0 = f(0),

Y ′′1 + Y ′1 = f ′(0), Y ′1(0) = 0,

with solution
Y1 = C1 + f ′(0)

[
ξ + e−ξ

]
.

The full inner approximation is

y ∼ f(0) + ε
(
C1 + f ′(0)

[
ξ + e−ξ

])
+ o(ε). (15)

Expansions of (13) and (15) yield

yO(εξ) ∼ f(εξ) + ε[f ′(1)− f ′(εξ)] + o(ε) ∼ [f(0) + εf ′(0)ξ] + ε[f ′(1)− f ′(0)] + o(ε)

and
yI
(x
ε

)
∼ f(0) + f ′(0)x+ εC1 + o(ε) = f(0) + εf ′(0)ξ + εC1 + o(ε).
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Thus, C1 = f ′(1)− f ′(0).
The boundary value problem can be solved exactly, with the result

y(x) = f(x)− ε
∫ ε−1x

0
e−sf ′(x− εs) ds+ ε

∫ ε−1

0
e−sf ′(1− εs) ds.

Asymptotic approximation of this solution confirms the results obtained much more easily using
the singular perturbation method with Van Dyke’s matching principle.
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