Wednesday, June 1, 2022.

- Work 5 out of 6 problems.
 Each problem is worth 20 points.
 Write on one side of the paper only and hand your work in order.
 Do not interpret a problem in such a way that it becomes trivial.
 - (1) (a) Let $f_n(x) = nx(1-x)^n$ for $x \in [0,1]$. Prove that $\{f_n\}$ converges pointwise and determine if it converges uniformly on [0,1]. Is $\{f_n\}$ equicontinuous? Clearly motivate your answer.
 - (b) Prove that in general, if $\{f_n\}_{n\geq 1}$ is an equicontinuous sequence of functions on a compact interval and $f_n \to f$ pointwise, then the convergence is uniform.
 - (2) Let (X, ρ) be a metric space. Suppose that $x_0 \in X$. For each $\varepsilon > 0$, set $E_{\varepsilon} := \{ x \in X : \rho(x, x_0) \ge \varepsilon \}.$

Suppose that $f: X \to \mathbb{R}$ is continuous and $f(E_{\varepsilon})$ is compact for all $\varepsilon > 0$. Prove that f(X) is compact.

- (3) Consider the sequence $\{x_n\}_{n\geq 1}$ defined by $0 < x_1 < 1$ and $x_{n+1} = 1 \sqrt{1 x_n}$ for $n = 1, 2, \dots$ Show that $x_n \to 0$ as $n \to \infty$. Also, show that $\frac{x_{n+1}}{x_n} \to \frac{1}{2}$.
- (4) Use the Riemann condition to show that $f \in \mathcal{R}_{\alpha}[0,3]$ where $f(x) = \ln(2x+1)$ and

$$\alpha(x) = \begin{cases} x+2, & 0 \le x \le 2\\ 3x-1, & 2 < x \le 3 \end{cases}$$

Compute the value of the Riemann-Stieltjes integral $\int_0^3 f(x) d\alpha$.

(5) Find the domain of convergence and the sum of the series

$$\sum_{n \ge 0} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Show how one may use the sum of the series to provide an approximation for π up to three decimals. Be sure to provide all technical details.

(6) Show that

$$d_1(f,g) := \int_0^1 |f(x) - g(x)| \, dx \quad \text{and} \quad d_\infty(f,g) := \operatorname{lub}_{x \in [0,1]} |f(x) - g(x)|$$

are metrics on C[0, 1], but are not equivalent on C[0, 1].