Wednesday, June 1, 2022.

- Work 5 out of 6 problems. - Each problem is worth 20 points. - Write on one side of the paper only and hand your work in order.
- Do not interpret a problem in such a way that it becomes trivial.
(1) (a) Let $f_{n}(x)=n x(1-x)^{n}$ for $x \in[0,1]$. Prove that $\left\{f_{n}\right\}$ converges pointwise and determine if it converges uniformly on $[0,1]$. Is $\left\{f_{n}\right\}$ equicontinuous? Clearly motivate your answer.
(b) Prove that in general, if $\left\{f_{n}\right\}_{n \geq 1}$ is an equicontinuous sequence of functions on a compact interval and $f_{n} \rightarrow f$ pointwise, then the convergence is uniform.
(2) Let (X, ρ) be a metric space. Suppose that $x_{0} \in X$. For each $\varepsilon>0$, set

$$
E_{\varepsilon}:=\left\{x \in X: \rho\left(x, x_{0}\right) \geq \varepsilon\right\}
$$

Suppose that $f: X \rightarrow \mathbb{R}$ is continuous and $f\left(E_{\varepsilon}\right)$ is compact for all $\varepsilon>0$. Prove that $f(X)$ is compact.
(3) Consider the sequence $\left\{x_{n}\right\}_{n \geq 1}$ defined by $0<x_{1}<1$ and $x_{n+1}=1-\sqrt{1-x_{n}}$ for $n=$ $1,2, \ldots$. Show that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Also, show that $\frac{x_{n+1}}{x_{n}} \rightarrow \frac{1}{2}$.
(4) Use the Riemann condition to show that $f \in \mathcal{R}_{\alpha}[0,3]$ where $f(x)=\ln (2 x+1)$ and

$$
\alpha(x)=\left\{\begin{array}{l}
x+2, \quad 0 \leq x \leq 2 \\
3 x-1, \quad 2<x \leq 3
\end{array}\right.
$$

Compute the value of the Riemann-Stieltjes integral $\int_{0}^{3} f(x) d \alpha$.
(5) Find the domain of convergence and the sum of the series

$$
\sum_{n \geq 0}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

Show how one may use the sum of the series to provide an approximation for π up to three decimals. Be sure to provide all technical details.
(6) Show that

$$
d_{1}(f, g):=\int_{0}^{1}|f(x)-g(x)| d x \quad \text { and } \quad d_{\infty}(f, g):=\operatorname{lub}_{x \in[0,1]}|f(x)-g(x)|
$$

are metrics on $C[0,1]$, but are not equivalent on $C[0,1]$.

