Masters and Ph.D. Qualifying Exam

• Work 5 of 6 problems. • Each problem is worth 20 points. • Use one side of the paper only and hand your work in order. • Do not interpret a problem in such a way that it becomes trivial.

(1) Let $M < \infty$, $0 < \beta \leq 1$, and $\infty < a < b < \infty$ be given. Suppose that $\{f_j\}_{j=1}^{\infty} \subseteq \mathcal{F}$, where $\mathcal{F} = \left\{ f \in \mathcal{C}([a, b]) : |f(a)| \le M \text{ and } \sup_{x, y \in [a, b]} |f(x) - f(y)| \le M |x - y|^{\beta} \right\}.$

- (a) Show that $\{f_j\}_{j=1}^{\infty}$ has a subsequence that converges uniformly to some $f_0 \in \mathcal{C}([a, b])$.
- (b) Determine whether the function f_0 identified in part (a) must belong to \mathcal{F} . (Justify your claim.)
- (2) Let $\alpha \in \mathcal{C}(\mathbb{R})$ be a continuously differentiable function satisfying $\alpha(0) = 0$ and $\alpha'(x) > 0$ at each $x \in \mathbb{R}$. For each $j \in \mathbb{N}$, define the functions $f_j, g_j \in \mathcal{C}([0, 1])$ by

$$f_j(x) = x + \frac{1}{j}$$
 and $g_j(x) = \frac{j\alpha(x)}{1 + j\alpha(x)}$.
Evaluate $\lim_{j \to \infty} \int_0^1 f_j(x) \, \mathrm{d}g_j(x)$. (Carefully justify your claim.)

- (3) Suppose that $f \in \mathcal{C}([0,2])$ satisfies f(0) = f(2) = 0 and f(x) > x(2-x) on (0,2).
 - (a) Prove that the series $\sum_{i=0}^{\infty} (1-x)^{2j} f(x)$ converges pointwise **but not** uniformly on [0,2].
 - (b) Prove that the series $\sum_{i=0}^{\infty} (-1)^{j} \frac{(1-x)^{2j} f(x)}{j+1}$ converges uniformly on [0,2].

(4) Let X be a vector space, and For each $j \in \mathbb{N}$, suppose that $\|\cdot\|_j$ is a norm on X. Define

$$X_0 = \{x \in X : \|x\|_{X_0} < \infty\} \subseteq X, \quad \text{where} \quad \|x\|_{X_0} = \sum_{j=1}^{\infty} \|x\|_j.$$

- (a) Verify $(X_0, \|\cdot\|_{X_0})$ is a normed vector space.
- (b) Assume that $E \subseteq X_0$ is compact in $(X_0, \|\cdot\|_{X_0})$. For each $j \in \mathbb{N}$, prove that E must also be compact in $(X, \|\cdot\|_i)$.
- (c) For each $j \in \mathbb{N}$, suppose both of the following hold:
 - $(X, \|\cdot\|_j)$ is complete
 - $\forall x \in X$, $\|x\|_{j+1} \leq \left(\frac{j}{j+1}\right)^2 \|x\|_j$. Prove that $(X_0, \|\cdot\|_{X_0})$ is complete.

- (5) With (X, d) a metric space, let $\mathcal{F} \subseteq \mathcal{C}(X)$ be a given. (\mathcal{F} is not necessarily countable.) Assume that $\sup_{f \in \mathcal{F}} |f(x)| < \infty$, for each $x \in X$.
 - (a) Argue that for each $x \in X$, there is a unique value for $g(x) = \sup_{f \in \mathcal{F}} f(x)$ in \mathbb{R} .
 - (b) Let $g: X \to \mathbb{R}$ be as in part (a). For each $x \in X$, prove that $\liminf_{y \to x} g(y) \ge g(x)$.
- (6) Set $I = (0, \infty)$. Provide a counterexample or a proof for each of the following statements. (Carefully justify your claims.)
 - (a) If $f \in \mathcal{C}(I)$ is differentiable on I and $\lim_{x\to\infty} f(x)$ exists in \mathbb{R} , then $\lim_{x\to\infty} f'(x) = 0$.
 - (b) If $f \in \mathcal{C}(I)$ is differentiable on I, $\lim_{x\to\infty} f'(x)$ exists in \mathbb{R} , and $\sup_{x\in\mathbb{R}} |f(x)| < \infty$, then $\lim_{x \to \infty} f'(x) = 0.$
 - (c) If $f \in \mathcal{C}(I)$ and $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to\infty} f(x)$ both exist in \mathbb{R} , then f is uniformly continuous on I.