Do six of the nine questions. You should do at least one question from each section. If you have doubts about the wording of a problem or about what results may be assumed without proof, please ask for clarification. In no case should you interpret a problem in such a way that it becomes trivial. We write $[n]$ for the set $\{1,2, \ldots, n\}$.

Section A

Question 1. Recall that if $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ is a permutation of $[n]=\{1,2, \ldots, n\}$ then we say that the pair of indices (i, j) is an inversion of π if $i<j$ but $\pi_{i}>\pi_{j}$. For $n \geq 1$ let I_{n} be the total number of inversions in all permutations of $[n]$. For instance, $I_{1}=0, I_{2}=1$, and $I_{3}=9$.
a) Prove that for all positive integers n we have

$$
I_{n+1}=(n+1) I_{n}+n!\binom{n+1}{2}
$$

b) Use the above recurrence to deduce that for all $n \geq 1$

$$
I_{n}=\frac{n!}{2}\binom{n}{2} .
$$

Question 2. Let $d_{n, k}$ be the number of ordered sequences of k die rolls (i.e., sequences of integers from 1 to 6) that add up to n. Let d_{n} be the number of ordered sequences of die rolls of any length adding up to n. Thus $d_{5,2}=4$ since 5 can be written as $1+4,2+3,3+2$, or $4+1$. Similarly we have $d_{4}=8$ because a total of 4 can be rolled in 8 ways:

$$
4, \quad 3+1, \quad 1+3, \quad 2+2, \quad 2+1+1, \quad 1+2+1, \quad 1+1+2, \quad \text { and } \quad 1+1+1+1
$$

a) Determine an explicit form for the generating function $D_{k}(x)=\sum_{n \geq 0} d_{n, k} x^{n}$.
b) Determine an explicit form for the generating function $D(x)=\sum_{n \geq 0} d_{n} x^{n}$. Express your answer as a rational function.

Question 3.

a) State and prove the Orbit Counting Lemma (sometimes called Burnside's Lemma), relating the number of orbits in a group action $G \mapsto X$ to the the number of fixed points of the various group elements $g \in G$.
b) How many distinguishable 10 bead necklaces can be made using k colors of beads?

Section B

Question 4. Prove that if $1 \leq d \leq n-1$ and q is a prime power then there is a code over the finite field \mathbb{F}_{q} of length n and minimum distance at least d having at least

$$
q^{n} /\left(\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}\right)
$$

codewords. [Note that we do not require that the code be linear.]

Question 5. Let q be a prime power. Fix $1 \leq k<n$, and suppose that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ are distinct. (Here \mathbb{F}_{q} is the field with q elements so in particular $n \leq q$.) Let $H \in M_{(n-k) \times n}\left(\mathbb{F}_{q}\right)$ be defined by

$$
H=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{n-k-1} & \alpha_{2}^{n-k-1} & \cdots & \alpha_{n}^{n-k-1}
\end{array}\right) .
$$

a) Prove that the rows of H are linearly independent, and deduce that H is the parity check matrix for a linear code C whose length and dimension you should determine.
b) Further show every set of $n-k$ columns of H are linearly independent, and deduce that C has minimum distance at least $n-k+1$

Question 6. Recall that we call a family of subsets $\mathcal{F} \subseteq \mathcal{P}(n)$ a k-family if no $k+1$ sets $A_{1}, A_{2}, \ldots, A_{k+1} \in \mathcal{F}$ satisfy

$$
A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{k+1}
$$

Let \mathcal{F} be a k-family in $\mathcal{P}(n)$.
a) Prove that if σ is a circular permutation of $[n]$ then at most $k n$ sets from \mathcal{F} are intervals with respect to σ.
b) Prove that if \mathcal{F} contains a_{i} sets of size i then

$$
\sum_{i=0}^{n} \frac{a_{i}}{\binom{n}{i}} \leq k
$$

[Hint: you might want to first prove the case where $\emptyset,[n] \notin \mathcal{F}$.]

Section C

Question 7.

a) State and prove Hall's Theorem concerning the existence of matchings saturating X in a bipartite graph with bipartition X, Y.
b) Given a sequence $\mathcal{A}=\left(A_{i}\right)_{1}^{m}$ of subsets of [n], we say that \mathcal{A} has a system of distinct representatives if there exist $x_{1}, x_{2}, \ldots, x_{m}$, all distinct, such that $x_{i} \in A_{i}$ for all $i \in[m]$. Prove that \mathcal{A} has a system of distinct representatives if and only if for all $S \subseteq[m]$

$$
\left|\bigcup_{i \in S} A_{i}\right| \geq|S| .
$$

Question 8. Let G be a 2-connected graph. Prove that for all $v \in V(G)$ there exists $u \in V(G)$ such that u is adjacent to v and also $G \backslash\{u, v\}$ is connected.

Question 9. Let G be a graph that does not contain two disjoint odd cycles. Prove that $\chi(G) \leq 5$.

