

Twists of the Rabbit Polynomial

Santana Afton, Xian Li, Abigail Saladin Advisors: Justin Lanier, Dan Margalit

Three Polynomials

Twisted Rabbit Problem

Let g be a product in the Dehn twists about S and T. Since S and T generate a free group, we have:

$$g \in \langle S, T \rangle \cong F_{\mathbf{2}}$$

Fact: $f_R \cdot g$ is equivalent to one of f_R , f_C , or f_A .

Bartholdi and Nekrashevych (2006) gave an algorithm for determining which one.

Question

Are there all-rabbit subgroups of $\langle S, T \rangle$?

Examples of Subgroups

Methods: Reduction by Lifting

S lifts to T

T does not lift

Calculations

g	$\operatorname{lift}(g)$
S	T
T 2	$S^{-1}T^{-1}$
TST^{-1}	1

Fact: $f_R \cdot g$ is equivalent to $f_R \cdot \operatorname{lift}(g)$ when g is liftable

$$ST^2 \sim \operatorname{lift}(ST^2)$$

$$= \operatorname{lift}(S)\operatorname{lift}(T^2)$$

$$= T \cdot S^{-1}T^{-1}$$

$$\sim \operatorname{lift}(TS^{-1}T^{-1})$$

$$= 1$$

Fact: $f_R \cdot g$ is equivalent to $f_R \cdot T$ lift $(gT^{\mathbf{G}-1})$ when g is unliftable

$$S^{-1}T \sim T \cdot \operatorname{lift}(S^{-1}T \cdot T^{-1})$$

$$= T \cdot T^{-1}$$

$$= 1$$

Results

- 1. No non-trivial subgroup of $\langle T \rangle$ is all-rabbit.
- 2. Every infinitely liftable twist generates an all-rabbit subgroup.
- 3. In fact, the collection of all infinitely liftable twists generates an all-rabbit subgroup.
- 4. We developed a program that computes lifts of twists and creates visuals of subgroups.
- 5. No unliftable twist of word length 12 or less generates an all-rabbit subgroup.
- 6. We conjecture that no unliftable twist generates an all-rabbit subgroup.

We thank the NSF and the Georgia Tech School of Math for support.