Automorphisms and Characters of Finite Groups

Brittany Bianco, Leigh Foster
Mentor: Mandi A. Schaeffer Fry
Metropolitan State University of Denver

Nebraska Conference for Undergraduate Women in Mathematics
January 26, 2019
Big Idea

Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ^m_p is a "field automorphism" of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

Theorem

Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ^m_p-invariant member of $\text{Irr}_{q-1}'(G)$ is also fixed by σ.
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{\text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^*\}$ a subgroup of G
- φ^m_p is a "field automorphism" of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

$Sp_4(q) = \{g \text{ is an invertible } 4 \times 4 \text{ matrix over } \mathbb{F}_q \mid g^T J g = J\}$

where $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$
Fixed Notation

- \(G = Sp_4(q)\) where \(q\) is a power of an odd prime, \(p\)
- \(H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}\) a subgroup of \(G\)
- \(\varphi_p^m\) is a “field automorphism” of \(G\)
- \(\sigma\) is an automorphism of \(\mathbb{Q}(e^{2\pi i/|G|})\)

By definition, a group \((G, \star)\) has:
By definition, a group \((G, \star)\) has:

- **Associativity**
 \[\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c)\]
Fixed Notation

- $G = \text{Sp}_4(q)$ where q is a power of an odd prime, p
- $H = \{\text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ^m_p is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i / |G|})$

By definition, a group (G, \star) has:

- **Associativity**
 \[\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c) \]

- **An identity element, e**
 \[\exists e \in G \text{ s.t. } \forall a \in G, a \star e = e \star a = a. \]
By definition, a group \((G, \star)\) has:

- **Associativity**
 \[\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c) \]

- **An identity element, \(e\)**
 \[\exists e \in G \text{ s.t. } \forall a \in G, a \star e = e \star a = a. \]

- **An inverse for every group element**
 \[\forall a \in G, \exists b \in G \text{ (or } a^{-1} \text{) s.t. } a \star b = b \star a = e \]
By definition, a group \((G, \star)\) has:

- **Associativity**
 \[
 \forall a, b, c \in G, (a \star b) \star c = a \star (b \star c)
 \]

- **An identity element, \(e\)**
 \[
 \exists e \in G \text{ s.t. } \forall a \in G, a \star e = e \star a = a.
 \]

- **An inverse for every group element**
 \[
 \forall a \in G, \exists b \in G \text{ (or } a^{-1} \text{) s.t. } a \star b = b \star a = e
 \]

under the binary operation \(\star\)
By definition, a group \((G, \star)\) has:

- **Associativity**
 \[
 \forall a, b, c \in G, (a \star b) \star c = a \star (b \star c)
 \]

- **An identity element, \(e\)**
 \[
 \exists e \in G \text{ s.t. } \forall a \in G, a \star e = e \star a = a.
 \]

- **An inverse for every group element**
 \[
 \forall a \in G, \exists b \in G \text{ (or } a^{-1}) \text{ s.t. } a \star b = b \star a = e
 \]

under the binary operation \(\star\)

Example: \(\mathbb{Z}_{12}\) under addition
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ_p^{m} is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i / |G|})$

By definition, a group (G, \star) has:

- **Associativity**
 \[\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c) \]

- **An identity element, e**
 \[\exists e \in G \text{ s.t. } \forall a \in G, a \star e = e \star a = a. \]

- **An inverse for every group element**
 \[\forall a \in G, \exists b \in G \text{ (or } a^{-1} \text{) s.t. } a \star b = b \star a = e \]

under the binary operation \star

Example: \mathbb{Z}_{12} under addition
Non-Example: \mathbb{Z}_{12} under multiplication
Fixed Notation

- \(G = \text{Sp}_4(q) \) where \(q \) is a power of an odd prime, \(p \)
- \(H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \} \) a subgroup of \(G \)
- \(\varphi^m \) is a “field automorphism” of \(G \)
- \(\sigma \) is an automorphism of \(\mathbb{Q}(e^{2\pi i/|G|}) \)

So \(\text{Sp}_4(q) \) is a group?
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ_p^m is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

So $Sp_4(q)$ is a group?

Recall

$Sp_4(q) = \{ g \text{ is an invertible } 4 \times 4 \text{ matrix over } \mathbb{F}_q \mid g^T J g = J \}$.
So $Sp_4(q)$ is a group?
Recall
$Sp_4(q) = \{g \text{ is an invertible } 4 \times 4 \text{ matrix over } \mathbb{F}_q \mid g^TJg = J\}$.

- **Associativity**
 Matrix multiplication is associative
So $Sp_4(q)$ is a group?
Recall
$Sp_4(q) = \{ g \text{ is an invertible } 4 \times 4 \text{ matrix over } \mathbb{F}_q \mid g^TJg = J \}$.

- **Associativity**
 Matrix multiplication is associative
- **An identity element, e**
 $e = I$, the identity matrix since $I^TJI = J$
So $Sp_4(q)$ is a group?
Recall
$Sp_4(q) = \{ g \text{ is an invertible } 4 \times 4 \text{ matrix over } \mathbb{F}_q \mid g^T J g = J \}.$

- **Associativity**
 Matrix multiplication is associative
- **An identity element, e**

 $e = I$, the identity matrix since $I^T J I = J$
- **An inverse for every group element**
 Since g^{-1} also satisfies the group definition: $(g^{-1})^T J (g^{-1}) = J$
 then every element has an inverse.
Fixed Notation

- $G = \text{Sp}_4(q)$ where q is a power of an odd prime, p
- $H = \{\text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^*\}$ a **subgroup** of G
- φ_p^m is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

A subgroup H is a subset of group elements of a group G that is itself a group under the group operation.
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ^m is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

A subgroup H is a subset of group elements of a group G that is itself a group under the group operation.

Example: The evens mod 12 forms a subgroup of \mathbb{Z}_{12} under addition.
A subgroup H is a subset of group elements of a group G that is itself a group under the group operation.

Example: The evens mod 12 forms a subgroup of \mathbb{Z}_{12} under addition.
Non-Example: The odds mod 12 do not form a subgroup of \mathbb{Z}_{12} under addition.
A diagonal matrix has zeros everywhere except the main diagonal.
A diagonal matrix has zeros everywhere except the main diagonal.
So diag(a, a^{-1}, b, b^{-1}) is the diagonal matrix

$$\begin{bmatrix}
 a & 0 & 0 & 0 \\
 0 & a^{-1} & 0 & 0 \\
 0 & 0 & b & 0 \\
 0 & 0 & 0 & b^{-1}
\end{bmatrix}$$

With entries $a, b \in \mathbb{F}_q^*$
Fixed Notation

- $G = \text{Sp}_4(q)$ where q is a power of an odd prime, p
- $H = \{\text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^*\}$ a subgroup of G
- φ_p^m is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

But why is H a subgroup of G?

If we let $g = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & a^{-1} & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b^{-1} \end{bmatrix}$ and $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$ then

$$g^T J g = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & a^{-1} & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b^{-1} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & a^{-1} & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b^{-1} \end{pmatrix} = J$$
But why is H a subgroup of G?

Let $A = \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_1^{-1} & 0 & 0 \\ 0 & 0 & b_1 & 0 \\ 0 & 0 & 0 & b_1^{-1} \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & 0 & 0 & 0 \\ 0 & a_2^{-1} & 0 & 0 \\ 0 & 0 & b_2 & 0 \\ 0 & 0 & 0 & b_2^{-1} \end{bmatrix}$, then

$$AB = \begin{bmatrix} a_1a_2 & 0 & 0 & 0 \\ 0 & (a_1a_2)^{-1} & 0 & 0 \\ 0 & 0 & b_1b_2 & 0 \\ 0 & 0 & 0 & (b_1b_2)^{-1} \end{bmatrix}$$

Thus H is closed under the group operation from G, so H is a subgroup of G.
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ^m_p is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

A **homomorphism** is a function of one group to another that preserves the group operation.

So for groups $(G, *)$ and $(\bar{G}, *)$, then for any $g_1, g_2 \in G$

$$f(g_1 * g_2) = f(g_1) * f(g_2)$$
A homomorphism is a function of one group to another that preserves the group operation. So for groups (G, \star) and (\bar{G}, \star), then for any $g_1, g_2 \in G$

$$f(g_1 \star g_2) = f(g_1) \star f(g_2)$$

An automorphism is a bijective homomorphism from a group G onto itself.
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{\text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^*\}$ a subgroup of G
- φ^m_p is a “field automorphism” of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i/|G|})$

φ^m_p is an automorphism of $Sp_4(q)$ that raises all entries of its operand to the power p^m.

Example: let $B_3(i, s) \in G$ such that $B_3(i, s) = \begin{bmatrix} \gamma^i & 0 & 0 & 0 \\ 0 & \gamma^{-i} & 0 & 0 \\ 0 & 0 & \gamma^s & 0 \\ 0 & 0 & 0 & \gamma^{-s} \end{bmatrix}$

(where γ is a $q - 1$ root of 1 in \mathbb{F}_q^*)

(as defined in Srinivasan [3, Srinivasan 1968].)
Fixed Notation

- $G = Sp_4(q)$ where q is a power of an odd prime, p
- $H = \{ \text{diag}(a, a^{-1}, b, b^{-1}) \mid a, b \in \mathbb{F}_q^* \}$ a subgroup of G
- φ_p^m is a "field automorphism" of G
- σ is an automorphism of $\mathbb{Q}(e^{2\pi i / |G|})$

φ_p^m is an automorphism of $Sp_4(q)$ that raises all entries of its operand to the power p^m.

Example: let $B_3(i, s) \in G$ such that $B_3(i, s) = \begin{bmatrix} \gamma^i & 0 & 0 & 0 \\ 0 & \gamma^{-i} & 0 & 0 \\ 0 & 0 & \gamma^s & 0 \\ 0 & 0 & 0 & \gamma^{-s} \end{bmatrix}$

(where γ is a $q - 1$ root of 1 in \mathbb{F}_q^*)

(as defined in Srinivasan [3, Srinivasan 1968].)

Observe $\varphi_p(B_3(i, s))$:

$\varphi_p \left(\begin{bmatrix} \gamma^i & 0 & 0 & 0 \\ 0 & \gamma^{-i} & 0 & 0 \\ 0 & 0 & \gamma^s & 0 \\ 0 & 0 & 0 & \gamma^{-s} \end{bmatrix} \right) = \begin{bmatrix} \gamma^{ip} & 0 & 0 & 0 \\ 0 & \gamma^{-ip} & 0 & 0 \\ 0 & 0 & \gamma^{sp} & 0 \\ 0 & 0 & 0 & \gamma^{-sp} \end{bmatrix} = B_3(ip, sp)$
Representation

A *representation* is a homomorphism ρ from a group G into a group of $n \times n$ invertible matrices with entries in \mathbb{C}.

$$\rho : G \rightarrow GL_n(\mathbb{C}) \text{ such that } \rho(gh) = \rho(g)\rho(h) \text{ for all } g, h \in G$$

(where $GL_n(\mathbb{C})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{C})
The *trace* of a matrix is the sum of its diagonal entries.

So \(\text{Tr}(A_{n \times n}) = a_{11} + a_{22} + \ldots + a_{nn} \).
The *trace* of a matrix is the sum of its diagonal entries.

So \(\text{Tr}(A_{n\times n}) = a_{11} + a_{22} + \ldots + a_{nn} \).

So if
\[
\begin{bmatrix}
a & 0 & 0 & 0 \\
0 & a^{-1} & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & b^{-1}
\end{bmatrix}
\]

Then \(\text{Tr}(h) = a + a^{-1} + b + b^{-1} \).
A character χ is the composition of the trace function with the representation of a group element.

$$\chi = \text{Tr} \circ \rho$$

$$\chi(g) = \text{Tr}(\rho(g))$$
Theorem

Assume every φ^m_p-invariant member of \text{Irr}(H) is also fixed by σ. Then every φ^m_p-invariant member of \text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

Recall...
Theorem
Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.
Then every φ^m_p-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

χ is irreducible if $\chi \neq \chi_1 + \chi_2$ for characters χ_1, χ_2

$\text{Irr}(H)$ is the set of irreducible characters of H.
Theorem

Assume every φ_p^m-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ_p^m-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

χ is irreducible if $\chi \neq \chi_1 + \chi_2$ for characters χ_1, χ_2

$\text{Irr}(H)$ is the set of irreducible characters of H.

$\text{Irr}_{(q-1)'}(G)$ is the set of irreducible characters of G such that n is relatively prime to the quantity $(q - 1)$.
Theorem
Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.
Then every φ^m_p-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

Given the automorphism of φ^m_p of G and $\chi \in \text{Irr}(G)$, we can obtain a new irreducible character $\varphi^m_p \chi$ via

$$\varphi^m_p \chi(g) = \chi(\varphi^m_p(g))$$
Theorem
Assume every \(\varphi_p^m \)-invariant member of \(\text{Irr}(H) \) is also fixed by \(\sigma \).
Then every \(\varphi_p^m \)-invariant member of \(\text{Irr}(q^{-1})'(G) \) is also fixed by \(\sigma \).

\(\varphi_p^m \) is an automorphism of \(Sp_4(q) \) that raises all entries of its operand to the power \(p^m \). So \(\varphi_p^m(\chi(g)) = \chi(\varphi_p^m(g)) \).

Looking at \(\chi_8(k) \), we claim that \(\varphi_p(\chi_8(k)) = \chi_8(kp) \).
Theorem
Assume every φ_p^m-invariant member of $\text{Irr}(H)$ is also fixed by σ.
Then every φ_p^m-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

φ_p^m is an automorphism of $Sp_4(q)$ that raises all entries of its operand to the power p^m. So $\varphi_p^m(\chi(g)) = \chi(\varphi_p^m(g))$.

Looking at $\chi_8(k)$, we claim that $\varphi_p(\chi_8(k)) = \chi_8(kp)$.

For example, we know that $\varphi_p(B_3(i, s)) = B_3(ip, sp)$.
Now let $\chi = \chi_8(k)$ and $g = B_3(i, s)$, where χ_8 is a character of G.

Theorem
Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ^m_p-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

φ^m_p is an automorphism of $\text{Sp}_4(q)$ that raises all entries of its operand to the power p^m. So $\varphi^m_p(\chi(g)) = \chi(\varphi^m_p(g))$.

Looking at $\chi_8(k)$, we claim that $\varphi_p(\chi_8(k)) = \chi_8(kp)$.

For example, we know that $\varphi_p(B_3(i, s)) = B_3(ip, sp)$.
Now let $\chi = \chi_8(k)$ and $g = B_3(i, s)$, where χ_8 is a character of G.

Notice that $\chi(g) = (\tilde{\gamma}^{ik} + \tilde{\gamma}^{-ik})(\tilde{\gamma}^{sk} + \tilde{\gamma}^{-sk})$

(\text{where } \tilde{\gamma} \text{ is a } q - 1 \text{ root of 1 in } \mathbb{C}. \text{)} [3]
Theorem
Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.
Then every φ^m_p-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

φ^m_p is an automorphism of $Sp_4(q)$ that raises all entries of its operand to the power p^m. So $\varphi^m_p(\chi(g)) = \chi(\varphi^m_p(g))$.

Looking at $\chi_8(k)$, we claim that $\varphi_p(\chi_8(k)) = \chi_8(k^p)$.

For example, we know that $\varphi_p(B_3(i, s)) = B_3(ip, sp)$.

Now let $\chi = \chi_8(k)$ and $g = B_3(i, s)$, where χ_8 is a character of G.

Notice that
$$\chi(g) = (\tilde{\gamma}^{ik} + \tilde{\gamma}^{-ik})(\tilde{\gamma}^{sk} + \tilde{\gamma}^{-sk})$$

(where $\tilde{\gamma}$ is a $q - 1$ root of 1 in \mathbb{C}.) [3]

Consider
$$\varphi_p(\chi(g)) = \chi(\varphi_p(g))$$
$$= (\tilde{\gamma}^{ikp} + \tilde{\gamma}^{-ikp})(\tilde{\gamma}^{skp} + \tilde{\gamma}^{-skp})$$
Assume every φ_p^m-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ_p^m-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

φ_p^m is an automorphism of $Sp_4(q)$ that raises all entries of its operand to the power p^m. So $\varphi_p^m(\chi(g)) = \chi(\varphi_p^m(g))$.

Looking at $\chi_8(k)$, we claim that $\varphi_p(\chi_8(k)) = \chi_8(k^p)$.

For example, we know that $\varphi_p(B_3(i, s)) = B_3(ip, sp)$.

Now let $\chi = \chi_8(k)$ and $g = B_3(i, s)$, where χ_8 is a character of G.

Notice that $\chi(g) = (\tilde{\gamma}^{ik} + \tilde{\gamma}^{-ik})(\tilde{\gamma}^{sk} + \tilde{\gamma}^{-sk})$

(Where $\tilde{\gamma}$ is a $q-1$ root of 1 in \mathbb{C}.) [3]

Consider $\varphi_p(\chi(g)) = \chi(\varphi_p(g))$

$= (\tilde{\gamma}^{ikp} + \tilde{\gamma}^{-ikp})(\tilde{\gamma}^{skp} + \tilde{\gamma}^{-skp})$

So $\varphi_p(\chi_8(k)(g)) = \chi_8(k^p)(g)$.
A φ^m_p-invariant character is one which can go through φ^m_p and come out equal to itself as before the operation.

So if χ is φ^m_p-invariant, then $\varphi^m_p(\chi) = \chi$.

For example, if $\chi_8(k)$ is fixed by φ^m_p, then its values are \mathbb{Q}-combinations of $p^m - 1$ roots of unity.
Theorem

Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.

Then every φ^m_p-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

Recall $\mathbb{Q}(e^{2\pi i/|G|})$.

Recall \(\mathbb{Q}(e^{2\pi i/|G|}) \).

That is, the rational numbers plus the \(|G|\)th-roots of unity.
Recall \(\mathbb{Q}(e^{2\pi i/|G|}) \).

That is, the rational numbers plus the \(|G|\)th-roots of unity.

Fun Fact: Although all of our characters do live in \(\mathbb{C} \), we can actually restrict that to \(\mathbb{Q}(e^{2\pi i/|G|}) \).
Theorem
Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.
Then every φ^m_p-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.

Given an automorphism σ of $\mathbb{Q}(e^{2\pi i/|G|})$ and an irreducible character χ of G, we have another irreducible character $(\sigma\chi)$ given by

$$(\sigma\chi)(g) = \sigma(\chi(g))$$
Theorem

Assume every \(\varphi_m \)-invariant member of \(\text{Irr}(H) \) is also fixed by \(\sigma \).
Then every \(\varphi_m \)-invariant member of \(\text{Irr}_{(q-1)'}(G) \) is also fixed by \(\sigma \).

Given an automorphism \(\sigma \) of \(\mathbb{Q}(e^{2\pi i/|G|}) \) and an irreducible character \(\chi \) of \(G \), we have another irreducible character \((\sigma\chi) \) given by

\[
(\sigma\chi)(g) = \sigma(\chi(g))
\]

Recall

\[
(\varphi_m \chi)(g) = \chi(\varphi_m(g))
\]

Note that applying \(\sigma \) to \(\chi \) behaves differently than applying \(\varphi_m \) to \(\chi \).
WE MADE IT!

Theorem

Assume every φ_p^m-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ_p^m-invariant member of $\text{Irr}_{(q-1)'}(G)$ is also fixed by σ.
The Local Side

Theorem

Assume every φ^m_p-invariant member of $\text{Irr}(H)$ is also fixed by σ.

Then every φ^m_p-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

\[\mathcal{X}_k : \mathbb{F}_q^* \to \mathbb{C}^* \] is an irreducible representation of \mathbb{F}_q^*, where
\[\mathcal{X}_k(\gamma) = \tilde{\gamma}^k, \text{ where } \gamma \text{ is a } q-1 \text{ root of 1 in } \mathbb{F}_q^*. \]

Lemma

If φ^m_p fixes \mathcal{X}_k then $\tilde{\gamma}^k$ is a $p^m - 1$ root of 1.

(where $\tilde{\gamma}$ is a $q-1$ root of 1 in \mathbb{C}.)

All characters of H can be obtained from those of the form \mathcal{X}_k.
The Local Side

Theorem

(*) Assume every φ_p^m-invariant member of $\text{Irr}(H)$ is also fixed by σ. Then every φ_p^m-invariant member of $\text{Irr}(q-1)'(G)$ is also fixed by σ.

Lemma

Under assumption (*), then every $p^m - 1$ root of 1 is σ-fixed.
The Global Side

Theorem
Assume every \(\varphi_p^m \)-invariant member of \(\text{Irr}(H) \) is also fixed by \(\sigma \).
Then every \(\varphi_p^m \)-invariant member of \(\text{Irr}(q-1)'(G) \) is also fixed by \(\sigma \).

Assume a character of \(G \) is fixed by \(\varphi_p^m \).
Consider \(\chi_8 \):
Recall that when \(\chi_8(k) \) is fixed by \(\varphi_p^m \), then its values are \(\mathbb{Q} \)-combinations of \(p^m - 1 \) roots of unity.

Lemma
Then its values are in \(\mathbb{Q}(e^{2\pi i/(p^m-1)}) \).
The Global Side

Theorem

(⋆) Assume every \(\varphi^m_p \)-invariant member of \(\text{Irr}(H) \) is also fixed by \(\sigma \).
Then every \(\varphi^m_p \)-invariant member of \(\text{Irr}_{(q-1)'}(G) \) is also fixed by \(\sigma \).

Theorem

Under assumption (⋆), if \(\chi_8(k) \) is fixed by \(\varphi^m_p \) then \(\chi_8(k) \) is also fixed by \(\sigma \).

This, with the previous lemmas, proves our theorem for \(\chi_8(k) \); the proofs for the other members of \(\text{Irr}_{(q-1)'}(G) \) are similar.
Future Direction

Conjecture

Let \(\ell \) be an odd prime and let \(P \) be a Sylow \(\ell \)-subgroup of \(G \) such that \(\varphi_p(g) \in P \) for each \(g \in P \). Let \(m \) be a positive integer and assume every \(\varphi_p^m \)-invariant member of \(\text{Irr}(P) \) is also fixed by \(\sigma_\ell \). Then every \(\varphi_p^m \)-invariant member of \(\text{Irr}_\ell'(G) \) is also fixed by \(\sigma_\ell \). (Here \(\sigma_\ell \) is a specific automorphism of \(\mathbb{Q}(e^{2\pi i/|G|}) \) depending on \(\ell \)).
REFERENCES

Joseph A. Gallian.
Contemporary Abstract Algebra.
Houghton Mifflin, Boston, Massachusetts, 2002.

Gordon James and Martin Liebeck.
Representations and characters of groups.

Bhama Srinivasan.
The characters of the finite symplectic group $\text{Sp}(4, q)$.
ACKNOWLEDGEMENTS

- National Science Foundation (Award No. DMS-1801156)
- Metropolitan State University of Denver
- Dr. Diane Davis
- Dr. Mandi A. Schaeffer Fry
- NCUWM Conference