Efficiency of a Moving Mesh System with a Curvature-type Monitor Applied to Burgers’ Equation

Marianne DeBrito, Annaliese Keiser, Taima Younes
Mentor: Joan Remski

January 26, 2019

This research was conducted at the University of Michigan-Dearborn, and this project was supported by the National Science Foundation (DMS-1659203), the National Security Agency, and the University of Michigan-Dearborn.
Outline

1. Burgers’ Equation
2. Physical Solution PDE & Errors
3. Moving Mesh PDE & Benefits
4. Our Theorem
5. Why it matters
An Interesting RDM: Burgers’ Equation

- Simplified Navier-Stokes equation, in 1-D:

\[u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x \]
An Interesting RDM: Burgers’ Equation

- Simplified Navier-Stokes equation, in 1-D:

\[u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x \]

Initial conditions:

\[u(x, 0) = \begin{cases}
1 & x \leq 0.25 \\
2 - 4x & 0.25 < x \leq 0.5 \\
0 & x > 0.5
\end{cases} \]
An Interesting RDM: Burgers' Equation

- Simplified Navier-Stokes equation, in 1-D:

\[u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x \]

Initial conditions:

\[u(x, 0) = \begin{cases}
1 & x \leq 0.25 \\
2 - 4x & 0.25 < x \leq 0.5 \\
0 & x > 0.5
\end{cases} \]

Boundary conditions:

\[u(0, t) = 1, \]
\[u(1, t) = 0 \]
An Interesting RDM: Burgers’ Equation

- Simplified Navier-Stokes equation, in 1-D:

\[u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x \]

Initial conditions:

\[u(x, 0) = \begin{cases}
1 & x \leq 0.25 \\
2 - 4x & 0.25 < x \leq 0.5 \\
0 & x > 0.5
\end{cases} \]

Boundary conditions:

\[u(0, t) = 1, \]
\[u(1, t) = 0 \]

- Propagating wavefront with steepness controlled by \(\epsilon \)
Evolution of a Numerical Solution to Burgers’ Equation Over Time ($\epsilon = 0.01$)

\[u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x \]
Evolution of a Numerical Solution to Burgers’ Equation Over Time ($\epsilon = 0.001$)

$$u_t = \epsilon u_{xx} - \left(\frac{1}{2} u^2 \right)_x$$
Approximating Solutions over Time

- Finding \(u(x_j, t_{n+1}) \):

\[
u_{j,n+1} = \left(\frac{\epsilon \Delta t}{h_j^2} \right) u_{j-1,n} + \left(1 - 2 \frac{\epsilon \Delta t}{h_j^2} \right) u_{j,n} + \left(\frac{\epsilon \Delta t}{h_j^2} \right) u_{j+1,n} + \frac{\Delta t}{4h_j} (u_{j+1,n} - u_{j-1,n}) + u_{j,n}\]
Introduction to Moving Mesh Methods

- Adaptive techniques to solve partial differential equations numerically
- As physical solution, u, evolves, so do the grid points, x_j
Introduction to Moving Mesh Methods

- Adaptive techniques to solve partial differential equations numerically
- As physical solution, u, evolves, so do the grid points, x_j

Goal
Balance the undesirable characteristics of the physical PDE by adjusting points using a moving mesh PDE.
The Moving Mesh Equation

- **Moving Mesh PDE:**
 \[x_t = (\omega x_\xi)_\xi \]
 for \(x = x(\xi, t) \)

- **Steady State Moving Mesh PDE:**
 \[0 = (\omega x_\xi)_\xi \]

- \(\omega = \text{Monitor Function}, \) aka the “Mesh Density Function”
Mesh Movement Mapping

\[x(\xi) : \Omega_C \rightarrow \Omega_P \]
Examples of Moving Mesh

Figure: A fixed mesh method compared to an Arc Length-type mesh

\[\omega = \sqrt{1 + \alpha u_x^2} \]
Moving Mesh Methods

Examples of Moving Mesh

Figure: A fixed mesh method compared to a Curvature-type mesh

\[
\omega = \left(1 + \epsilon^p u_{xx}^2\right)^{1/q}
\]
Effectiveness of the Curvature Monitor

Here, note that for z to be $O(C)$ means that $M_1 C \leq z \leq M_2 C$, where M_1 and M_2 are arbitrary constants.

Theorem (DKRY’18)

Let $u = u(x)$ be the physical solution that satisfies the following assumptions:

(i) the solution has large gradient in Ω_ϵ, i.e., $\|u_x\|_\infty = O(\epsilon^{-1})$ and in $[0, 1] \div \Omega_\epsilon$ $\|u_x\|_\infty = O(1)$, and

(ii) the solution has large curvature over Ω_ϵ, i.e., $\|u_{xx}\|_\infty = O(\epsilon^{-2})$ and in $[0, 1] \div \Omega_\epsilon$ $\|u_{xx}\|_\infty = O(1)$, where $\text{meas}(\Omega_\epsilon) = O(\epsilon)$.

Effectiveness of the Curvature Monitor

Here, note that for z to be $O(C)$ means that $M_1 C \leq z \leq M_2 C$, where M_1 and M_2 are arbitrary constants.

Theorem (DKRY’18)

Let $u = u(x)$ be the physical solution that satisfies the following assumptions:
(i) the solution has large gradient in Ω_ϵ, i.e., $\|u_x\|_\infty = O(\epsilon^{-1})$ and in $[0,1] \setminus \Omega_\epsilon$ $\|u_x\|_\infty = O(1)$, and
(ii) the solution has large curvature over Ω_ϵ, i.e., $\|u_{xx}\|_\infty = O(\epsilon^{-2})$ and in $[0,1] \setminus \Omega_\epsilon$ $\|u_{xx}\|_\infty = O(1)$, where $\text{meas}(\Omega_\epsilon) = O(\epsilon)$. Then, with the monitor function

$$\omega = (1 + \epsilon^p u_{xx}^2)^{1/q},$$

where $\epsilon \leq 1$, p and q are nonnegative and $p + q \geq 4$, the solution in computational domain, $v(\xi) = u(x(\xi))$, and the mapping from the physical domain to the computational domain, $\xi = \xi(x)$, satisfy the following bounds:
Effectiveness of the Curvature Monitor

Here, note that for z to be $O(C)$ means that $M_1 C \leq z \leq M_2 C$, where M_1 and M_2 are arbitrary constants.

Theorem (DKRY’18)

Let $u = u(x)$ be the physical solution that satisfies the following assumptions:

(i) the solution has large gradient in Ω_ε, i.e., $\|u_x\|_\infty = O(\varepsilon^{-1})$ and in $[0, 1] \setminus \Omega_\varepsilon$ $\|u_x\|_\infty = O(1)$, and

(ii) the solution has large curvature over Ω_ε, i.e., $\|u_{xx}\|_\infty = O(\varepsilon^{-2})$ and in $[0, 1] \setminus \Omega_\varepsilon$ $\|u_{xx}\|_\infty = O(1)$, where $\text{meas}(\Omega_\varepsilon) = O(\varepsilon)$. Then, with the monitor function

$$\omega = (1 + \varepsilon^p u_{xx}^2)^{1/q},$$

where $\varepsilon \leq 1$, p and q are nonnegative and $p + q \geq 4$, the solution in computational domain, $v(\xi) = u(x(\xi))$, and the mapping from the physical domain to the computational domain, $\xi = \xi(x)$, satisfy the following bounds:

$$\|x_\xi\|_\infty = O(1), \quad \|\xi_x\|_\infty = O(\varepsilon^{\frac{p-4}{q}}),$$

and $0 \leq \|v_\xi\|_\infty \leq M \varepsilon^{\frac{4-p-q}{q}}$.
Corollary (DKRY’18)

When considering the system discretely, with the same hypotheses as previously, where $h_j = x_{j+1} - x_j$, the following bounds are satisfied:

(i) On $[0, 1] \setminus \Omega_{\epsilon}$: \[\min h_j = O(\Delta \xi) \]

(ii) On Ω_{ϵ}: \[\min h_j = O(\epsilon^{\frac{4-p}{q}} \Delta \xi) \]
Mistakes Were Made: Types of Errors 😞

- **Truncation error:**

 \[u_x(x_j) = \frac{u(x_{j+1}) - u(x_{j-1})}{2h_j} + (2h_j)^2 u_{xx}(x_j) + ... \]

- When \(u_{xx} \) is large (we assume \(O(\epsilon^{-2}) \)), we need \(h_j \) very small
- A fixed mesh uses \(h_j = \Delta \xi \)
Truncation error:

\[u_x(x_j) = \frac{u(x_{j+1}) - u(x_{j-1})}{2h_j} + (2h_j)^2 u_{xx}(x_j) + \ldots \]

- When \(u_{xx} \) is large (we assume \(O(\epsilon^{-2}) \)), we need \(h_j \) very small
- A fixed mesh uses \(h_j = \Delta \xi \)
- A moving mesh uses \(\min h_j = O(\Delta \xi \epsilon^{\frac{4-p}{q}}) \) \(\ldots \) \(p = 1, q = 6 \)
Mistakes Were Made: Types of Errors 😞

- **Truncation error:**
 \[u_x(x_j) = \frac{u(x_{j+1}) - u(x_{j-1})}{2h_j} + (2h_j)^2 u_{xx}(x_j) + \ldots \]

- When \(u_{xx} \) is large (we assume \(O(\epsilon^{-2}) \)), we need \(h_j \) very small

- A fixed mesh uses \(h_j = \Delta \xi \)

- A moving mesh uses \(\min h_j = O(\Delta \xi \epsilon^{\frac{4-p}{q}}) \) . . . \(p = 1, q = 6 \)

- On a fixed mesh, the truncation error is of order \(\Delta \xi^2 \epsilon^{-2} \), but on this moving mesh system, truncation error is of order \(\Delta \xi^2 \epsilon^{-1} \)
Example of Moving Mesh on Burgers’ Equation
Mesh Trajectories for the Modeled Solution
Numerical Evidence for an Approximated Solution of Burgers’ Equation

Table: ϵ values for $\omega = (1 + \epsilon u_{xx}^2)^{1/6}$

| ϵ | $||u_x||_\infty$ | $||v_\xi||_\infty$ | exp | min h_j | exp | $||\xi_x||_\infty$ | exp |
|------------|-----------------|-----------------|-----|-----------|-----|----------------|-----|
| 0.01 | 12.449 | 3.193 | -0.448 | 0.00319 | 0.713 | 5.220 | -0.713 |
| 0.005 | 24.919 | 4.357 | -0.451 | 0.00195 | 0.665 | 8.556 | -0.658 |
| 0.0025 | 49.495 | 5.958 | -0.452 | 0.00123 | 0.611 | 13.498 | -0.615 |
| 0.00125 | 97.907 | 8.152 | -0.451 | 0.00080 | 0.568 | 20.672 | -0.567 |
| 0.000625 | 193.055 | 11.145 | -0.451 | 0.00054 | | 30.606 | |

$0 \leq ||v_\xi||_\infty \leq M\epsilon^{-\frac{1}{2}}, \text{ min } h_j = O(\epsilon^{\frac{1}{2}}) \text{ and } ||\xi_x||_\infty = O(\epsilon^{-\frac{1}{2}})$.
Thank You!

Special Thanks:
To Joan Remski, for being our wonderful mentor; to the University of Michigan-Dearborn REU Site in Mathematical Analysis, Algebraic Music Theory, and their Applications for hosting our research; and to the National Science Foundation and the National Security Agency for funding our REU.