GAME DESIGN I

A Course in Board Game Design
COURSE OBJECTIVES

- Build a Game
- Math & Mechanics
PEDAGOGY

MATHEMATICS

GAMES
PEDAGOGY: Strategies for Student Learning

MATHEMATICS

Game Building & Analysis
TENANT
LEARNING IS
CONNECTED
to stories

APPLICATION
Conjoining
Math & Game
Development

Dr. Jerome Bruner,
Educational Psychologist
Logistics

Hmwk Quiz Mini-Game Final Project

Grading Rubric

<table>
<thead>
<tr>
<th></th>
<th>Hmwk</th>
<th>Quiz</th>
<th>Mini-Game</th>
<th>Final Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>20%</td>
<td>10%</td>
<td>20%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Class Time

- **< 1/3: Lecture/Discussion**
 - Terms, History, Math
 - Homework for Assessment
- **> 2/3: Manipulatives**
 - In-Class Games
 - Analyzing Influential Games
 - Experimentation
Mini-Games

- Math Concept/Tool
- Final Project

Project Milestones

Game Design
1. Create
2. Analyze
3. Modify
MATHMATICS

• Graph Theory & Tessellations
• Combinatorics
• Probability & Statistics
• Matrices
• Game Theory

Select Applications
>> Fundamental Math Tools
>> Board Games
Elfenland won the *Spiel des Jahres* award... the Nobel prize for Game Design.
Graph Theory & Elfenland
Matrices

1. Roll 4-sided Die
2. Begin on Square 1
3. Move according to the number rolled.
Transition Matrix

Stochastic Matrix

\[T^n \] Calculates the probabilities of being in a given space after \(n \) moves.
On a side note.....

\[
T^3 = \begin{bmatrix}
1/64 & 0 & 0 & 1/64 & 3/64 & 3/32 & 5/32 & 3/16 & 5/32 & 3/32 & 3/64 & 1/64 \\
\end{bmatrix}
\]
Markov Chain

“a model used to describe an experiment or measurement that is performed many times in the same way, ... where the outcome of one trial depends only on the immediately preceding trial”

Broader Applications:

- Monopoly
- Chutes & Ladders
- Trivial Pursuit
Game Design

Mechanic: the game theory or mathematical tool within a game allowing for specific actions to be performed.

Matrices

1. Roll 4-sided Die
2. Begin on Square 1
3. Move according to the number rolled.

Transition Matrix

T Calculates the probabilities of being in a given space after n moves.

MATHEMATICAL

Bridge between Math & Game Design
Game Mechanics Reduced (37)

Action/Singing - games including miming, mimicry, singing, humming

Action Point Allowance System - allotted number of points per turn to use on actions

Area Enclosure - players create area and surround area as they play

Betting/Wagering - place money on specific game outcomes, commodities, or resources.

Card Drafting - pick cards from some subset of the deck with a specific purpose

Dice Rolling - allows for randomness and may act as a counter

Deck / Pool Building - players have a personal deck/pool and must manage resources for actions

Hand Management - maximal management of cards in hand with respect to game rules and setting

Grid Movement - players move on a gridded board

Modular Board - modular boards utilized for increased variety in game play

Memory - players have to remember previous game occurrences

Partnerships - games with hard and fast rules regarding player alliances

Pattern Building - placement of game pieces in a certain order

Player Elimination - players eliminated over the course of the game and the game continues until only one player remains

Press Your Luck - keep going till the odds are too high, stop when player chooses

Role Playing - extension of variable player powers, players role play characters

Route/Network Building - players build connections/drawing lines between points shooting for the longest chain

Set Collection - players collect certain items

Take That - deliberate action taken against an opponent as the main part of the game

Trick-taking - used in card games, players take “tricks”, played cards, determined by specific game rules

Variable Player Powers - games offering a variety of abilities or paths for characters to win

Worker Placement - players place game pieces that can perform some action in order to accomplish a goal, ultimately, winning

Action / Movement Programming - players discretely plan moves in advance, then must play them out accordingly

Area Control / Area Influence - player with the most units in an area takes control of said area

Area Movement - board game is divided into specific areas with rules regarding moving in and out of those areas, may include counters/chits/units

Auction/Bidding - place a bid on items to strengthen game position, items can allow for future actions to be performed

Cooperative Play - players work as a team to beat the game

Deck / Pool Building - players have a personal deck/pool and must manage resources for actions

Grid Movement - players move on a gridded board

Memory - players have to remember previous game occurrences

Pattern Building - placement of game pieces in a certain order

Pick-up and Deliver - players pick up items in one location and drop them off in another which usually allows for actions to be taken

Point to Point Movement - players move from one point to another via connecting lines

Rock-Paper-Scissors - circular, non-transitive order of pieces beating other pieces

Roll / Spin and Move - roll dice or spin spinners, then move accordingly

Simulation - attempts to model actual events or situations

Storytelling - players create the story as they play based on certain markers in the game, alternatively, players experience a predetermined story

Tile Placement - game pieces (tiles) are placed in accord with game rules to earn victory points

Trading - players can exchange resources with each other

Variable Phase Order - turns aren’t played in the same manner each time

Voting - player votes can influence the outcome of game events
Game Mechanics

<table>
<thead>
<tr>
<th>Dice Rolling</th>
<th>allows for randomness and may act as a counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trick-taking</td>
<td>used in card games, players take “tricks”, played cards, determined by specific game rules</td>
</tr>
<tr>
<td>Route/Network Building</td>
<td>players build connections/drawing lines between points shooting for the longest chain</td>
</tr>
<tr>
<td>Worker Placement</td>
<td>players place game pieces that can perform some action in order to accomplish a goal, ultimately, winning</td>
</tr>
<tr>
<td>Grid Movement</td>
<td>players move on a gridded board</td>
</tr>
<tr>
<td>Tile Placement</td>
<td>game pieces (tiles) are placed in accord with game rules to earn victory points</td>
</tr>
<tr>
<td>Area Control / Area Influence</td>
<td>player with the most units in an area takes control of said area</td>
</tr>
<tr>
<td>Betting/Wagering</td>
<td>place money on specific game outcomes, commodities, or resources.</td>
</tr>
</tbody>
</table>
Math Concept

• Matrices

Math Calculations

• Powers of Matrices

Game Setting

• Applied in our Red Mini-Board Game

Progression of Complexity

Assisting Students
Multi-Functioning Instruments of Learning

1) Provide a Knowledge Basis
2) Demonstrations of Math

GAMES

1. Play the Game
2. Math Lesson
3. Connect New Content to the Game

Scaffolding: providing verbal support for student learning.

“Scaffolding” coined by Dr. Jerome Bruner.
Combinatorics
1. Settler’s of Catan
2. Carcassonne
3. Daytona 500
4. Dominion
5. Set
GAMES
Multi-Functioning Instruments of Learning

1) Provide a Knowledge Basis
2) Demonstrations of Math
3) Made-Up Games
Horse Race Game

1 2 3 4 5 6 7 8 9 10 11 12

Get Get Get

Spend Spend Lose Lose

HOSES SHOES SPACES

1 1
2 3
3 5
4 8
CONCLUSION

Goals:
1. Build a Game
2. Identify the Mathematics

Building Connections:
1. Historical Anecdotes
2. Mathematical Game Analysis
Acknowledgements

• Dr. Porta, Professor of Mathematics
• Dr. Sharp, Professor of Mathematics Education
References

• Elfenland by AMIGO ISBN 1-892081-38-5

References cont’d

THANK YOU

Mary P. Greene
mary.greene1@washburn.edu