Ineffective Sets and the Region Crossing Change

Rachel Morris (University of Richmond)
Joint with Dr. Heather M. Russell (U of R) and Miles Clikeman (U of R)

Nebraska Conference for Undergraduate Women in Mathematics

January 27, 2019
Knot Theory Basics

A knot is a proper embedding of a closed curve in \mathbb{R}^3.

A link of m components is a proper embedding of m closed curves in \mathbb{R}^3.

A link diagram is a regular projection together with crossing information.

There are 2 c-diagrams associated to a projection with c crossings.
A **knot** is a proper embedding of a closed curve in \mathbb{R}^3.

A **link** of m components is a proper embedding of m closed curves in \mathbb{R}^3.

A **link diagram** is a regular projection together with crossing information.

There are 2 c diagrams associated to a projection with c crossings.
A knot is a proper embedding of a closed curve in \mathbb{R}^3.

A link of m components is a proper embedding of m closed curves in \mathbb{R}^3.
A **knot** is a proper embedding of a closed curve in \mathbb{R}^3.

A **link** of m components is a proper embedding of m closed curves in \mathbb{R}^3.

A **link diagram** is a regular projection together with crossing information.

![Projection](image1.png) ![Diagram](image2.png)
A knot is a proper embedding of a closed curve in \mathbb{R}^3.

A link of m components is a proper embedding of m closed curves in \mathbb{R}^3.

A link diagram is a regular projection together with crossing information.

There are 2^c diagrams associated to a projection with c crossings.
Region Crossing Change (RCC) - RCC is an operation on a link diagram in which a region is selected and all crossings incident to that region are reversed.

\[\text{RCC} \rightarrow \]

* Two diagrams are RCC-equivalent if one can be obtained from the other via a sequence of RCCs.
Region Crossing Change (RCC) - RCC is an operation on a link diagram in which a region is selected and all crossings incident to that region are reversed.
Region Crossing Change (RCC) - RCC is an operation on a link diagram in which a region is selected and all crossings incident to that region are reversed.

Two diagrams are RCC-equivalent if one can be obtained from the other via a sequence of RCCs.
Previous Results

RCC is an unknotting operation. All knot diagrams having the same underlying projection are RCC-equivalent.

(Cheng-Gao) Provide necessary and sufficient conditions for a link diagram to be RCC-equivalent to an unlink diagram.

(Dasbach-Russell) Count RCC-equivalence classes for link projections on closed, orientable surfaces such as the torus.
Previous Results

- (Shimizu) RCC is an unknotting operation.
(Shimizu) RCC is an unknotting operation. All knot diagrams having the same underlying projection are RCC-equivalent.
(Shimizu) RCC is an unknotting operation. All knot diagrams having the same underlying projection are RCC-equivalent.

(Cheng-Gao) Provide necessary and sufficient conditions for a link diagram to be RCC-equivalent to an unlink diagram.
Previous Results

- (Shimizu) RCC is an unknotting operation. All knot diagrams having the same underlying projection are RCC-equivalent.

- (Cheng-Gao) Provide necessary and sufficient conditions for a link diagram to be RCC-equivalent to an unlink diagram.

- (Dasbach-Russell) Count RCC-equivalence classes for link projections on closed, orientable surfaces such as the torus.
Motivating Question

Given a pair of RCC-equivalent diagrams, what is the minimum number of RCCs needed to transform one diagram into the other?

We call this the **RCC-distance** between diagrams.
Motivating Question

Given a pair of RCC-equivalent diagrams, what is the minimum number of RCCs needed to transform one diagram into the other?
Motivating Question

Given a pair of RCC-equivalent diagrams, what is the minimum number of RCCs needed to transform one diagram into the other?

We call this the **RCC-distance** between diagrams.
An Example

Note that every crossing must be changed. Therefore, we need to select an odd number of regions around every crossing. There are four ways to do this.

Conclusion: The RCC-distance between the diagrams is two.
An Example

Note that every crossing must be changed.
An Example

Note that every crossing must be changed. Therefore, we need to select an odd number of regions around every crossing. There are four ways to do this.
An Example

Note that every crossing must be changed. Therefore, we need to select an odd number of regions around every crossing. There are four ways to do this.

Conclusion: The RCC-distance between the diagrams is two.
An Example

Note that every crossing must be changed. Therefore, we need to select an odd number of regions around every crossing. There are four ways to do this.

Conclusion: The RCC-distance between the diagrams is two.
Ineffective Sets

- **Ineffective Set of Regions** - Performing RCCs on these regions has no net effect on the diagram.
Ineffective Sets

- **Ineffective Set of Regions** - Performing RCCs on these regions has no net effect on the diagram.

- Let R be an ineffective set and S be an arbitrary set of regions. Then, $R \oplus S$ has the same effect as S.

Lemma (Cheng & Gao)

An m-component link diagram has $2m + 1$ ineffective sets.
Ineffective Sets

- **Ineffective Set of Regions** - Performing RCCs on these regions has no net effect on the diagram.
- Let R be an ineffective set and S be an arbitrary set of regions. Then, $R \oplus S$ has the same effect as S.

\[
\text{(Diagram: Ineffective Sets)}
\]
Ineffective Sets

- **Ineffective Set of Regions** - Performing RCCs on these regions has no net effect on the diagram.
- Let R be an ineffective set and S be an arbitrary set of regions. Then, $R \oplus S$ has the same effect as S.

Lemma (Cheng & Gao)

An m-component link diagram has 2^{m+1} ineffective sets.
A reducible crossing of a link is bordered on two sides by the same region. A reducible diagram has at least one reducible crossing. Reducible crossings complicate the study of RCC equivalence.
A reducible crossing of a link is bordered on two sides by the same region.
RCC and Reducible Crossings

- A **reducible crossing** of a link is bordered on two sides by the same region.
- A **reducible diagram** has at least one reducible crossing.
A **reducible crossing** of a link is bordered on two sides by the same region.

A **reducible diagram** has at least one reducible crossing.

Reducible crossings complicate the study of RCC equivalence.
A **reducible crossing** of a link is bordered on two sides by the same region.

A **reducible diagram** has at least one reducible crossing.

Reducible crossings complicate the study of RCC equivalence.
A reducible crossing of a link is bordered on two sides by the same region.

A reducible diagram has at least one reducible crossing.

Reducible crossings complicate the study of RCC equivalence.
A **checkerboard coloring** is a black (B) and white (W) coloring of a projection such that opposite regions are the same color and adjacent regions are opposite colors.
Ineffective Sets of Reduced Links

A **checkerboard coloring** is a black (B) and white (W) coloring of a projection such that opposite regions are the same color and adjacent regions are opposite colors.

- All link projections can be checkerboard colored.
A **checkerboard coloring** is a black (\mathcal{B}) and white (\mathcal{W}) coloring of a projection such that opposite regions are the same color and adjacent regions are opposite colors.

- All link projections can be checkerboard colored.
- For a reduced link projection, checkerboard coloring yields the ineffective sets.
A **checkerboard coloring** is a black (\mathcal{B}) and white (\mathcal{W}) coloring of a projection such that opposite regions are the same color and adjacent regions are opposite colors.

- All link projections can be checkerboard colored.
- For a reduced link projection, checkerboard coloring yields the ineffective sets.
Given a checkerboard shading of a reducible link projection, at most one of B or W is ineffective.
Reducible Diagrams

Given a checkerboard shading of a reducible link projection, at most one of B or W is ineffective.

* Problematic reducible crossings
Tricoloring

In order to deal with reducible crossings, we define a tricoloring of a projection:
Tricoloring

In order to deal with reducible crossings, we define a **tricoloring** of a projection: an assignment of a color black (B), white (W), or green (G) to each region such that:

- every reduced crossing is checkerboard shaded by two of the three colors,
- every reducible crossing is bordered by three regions of different colors.
Tricoloring

In order to deal with reducible crossings, we define a tricoloring of a projection: an assignment of a color black (\mathcal{B}), white (\mathcal{W}), or green (\mathcal{G}) to each region such that:

- every reduced crossing is checkerboard shaded by two of the three colors, and
In order to deal with reducible crossings, we define a **tricoloring** of a projection: an assignment of a color black (\mathcal{B}), white (\mathcal{W}), or green (\mathcal{G}) to each region such that:

- every reduced crossing is checkerboard shaded by two of the three colors, and
- every reducible crossing is bordered by three regions of different colors.
In order to deal with reducible crossings, we define a **tricoloring** of a projection: an assignment of a color black (B), white (W), or green (G) to each region such that:

- every reduced crossing is checkerboard shaded by two of the three colors, and
- every reducible crossing is bordered by three regions of different colors.
Ineffective Sets for Arbitrary Knot Projections

Theorem

Given a tricoloring of a link projection, the sets $\emptyset, B \sqcup W, B \sqcup G,$ and $W \sqcup G$ are ineffective.
Ineffective Sets for Arbitrary Knot Projections

Theorem

Given a tricoloring of a link projection, the sets $\emptyset, B \sqcup W, B \sqcup G,$ and $W \sqcup G$ are ineffective.

Tricoloring
Ineffective Sets for Arbitrary Knot Projections

Theorem

Given a tricoloring of a link projection, the sets \emptyset, $\mathcal{B} \sqcup \mathcal{W}$, $\mathcal{B} \sqcup \mathcal{G}$, and $\mathcal{W} \sqcup \mathcal{G}$ are ineffective.
Theorem

Given a tricoloring of a link projection, the sets \emptyset, $B \sqcup \mathcal{W}$, $B \sqcup G$, and $\mathcal{W} \sqcup G$ are ineffective.

For a knot projection, these are the only ineffective sets.
Each m-component link has 2^{m+1} ineffective sets.

Basis:

\[
\{ \ldots \}
\]

Ineffective sets:

\[
\{ \ldots \}
\]
Link Projections

- Each m-component link has 2^{m+1} ineffective sets.
- A basis for these sets consists of:

\[
\{ \}_{\text{one set coming from a tricoloring of the entire diagram}} \cup \\
\{ \}_{\text{one set coming from a modified tricoloring of each component}}.
\]
Link Projections

- Each m-component link has 2^{m+1} ineffective sets
- A basis for these sets consists of:
 - one set coming from a tricoloring of the entire diagram and
Link Projections

- Each m-component link has 2^{m+1} ineffective sets.
- A basis for these sets consists of:
 - one set coming from a tricoloring of the entire diagram and
 - one set coming from a modified tricoloring of each component.
Link Projections

- Each m-component link has 2^{m+1} ineffective sets.
- A basis for these sets consists of:
 - one set coming from a tricoloring of the entire diagram and
 - one set coming from a modified tricoloring of each component.
- The complete collection of ineffective sets is obtained by symmetric difference.
Each m-component link has 2^{m+1} ineffective sets. A basis for these sets consists of:
- one set coming from a tricoloring of the entire diagram and
- one set coming from a modified tricoloring of each component.

The complete collection of ineffective sets is obtained by symmetric difference.

Basis: \[
\begin{cases}
\end{cases}
\]
Each m-component link has 2^{m+1} ineffective sets
A basis for these sets consists of:
- one set coming from a tricoloring of the entire diagram and
- one set coming from a modified tricoloring of each component.

The complete collection of ineffective sets is obtained by symmetric difference.

Basis: $\{\}$

Ineffective sets: $\{\}$
Thank you for your attention and the NCUWM staff for organizing this conference!