Boundary Layer Transition/Separation in Turbulent Fluids

Elizabeth Spaulding1, Dr. Adam Larios1, and Dr. Jae Sung Park2

1Department of Mathematics
2Department of Mechanical & Materials Engineering
University of Nebraska-Lincoln
The Evolution of Fluid Dynamics

- Euler equations (1755) - Leonhard Euler
 - Two coupled, nonlinear partial differential equations
 - Derived from Newton’s laws
 - Ignored viscosity
- Navier-Stokes equations (1822) - Claude-Louis Navier and George Stokes
 - Accounted for internal friction
 - Most accurate mathematical description of fluid flow to date
- First concept of boundary layer (1904) - Ludwig Prandtl
 - Fluid adjacent to the surface sticks to the surface, forming a very thin layer
 - Frictional effects only observed inside the boundary layer
 - Flow separation
 - Enabled us to study wake turbulence
Turbulent Flow Control for Drag Reduction

• The potential impact of turbulent flow control in many engineering applications:
 - Commercial airliners: up to 50% of the fuel consumption is associated with turbulent drag.
 - Alaska pipeline: adding small amount of long-chain polymers reduces friction loss of turbulent flows dramatically (1.44 million barrel/day → 2.14 million barrel/day; 50% increase).
 - Flow control technologies that reduce drag by 1% could save up $2 billion annually.

A350 XWB

Alaska pipeline for oil transport
Reynolds Number

\[Re = \frac{\rho UL}{\mu} = \frac{\text{Inertial}}{\text{Viscous}} \]

- Dimensionless quantity
- Ratio of inertial forces to viscous forces

\(\rho \) - Density of the fluid
\(u \) - Velocity of the fluid with respect to the object
\(L \) - Characteristic length
\(\mu \) - Viscosity of the fluid
Boundary layer

Tollmien-Schlichting waves

Re\textsubscript{x} \sim 1
- leading edge region:
- full N-S equations

Re\textsubscript{x} \gg 1
- laminar B.L. equations valid; initial condition forgotten at \(x_0 \) required
- similarity; initial condition forgotten

\(\delta(x) \)

\(x_0 \)
- instability: disturbances grow and interact
- transition: flow becomes increasingly irregular downstream

Re\textsubscript{c} \sim 10^6
- First occurrence of growth of disturbance

\(U \)

Extent of viscous flow
Boundary layer equations

- Two-dimensional Navier-Stokes equations:

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} &= -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)
\end{align*}
\]

Continuity:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,
\]

Assumptions for boundary layer:

- \(u \gg v \)
- \(\frac{\partial}{\partial y} \gg \frac{\partial}{\partial x} \)
- \(Re \gg 1 \)
- \(U = \text{constant} \)
Boundary layer equations

- Boundary layer equations:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2},
\]

\[
- \frac{1}{\rho} \frac{\partial p}{\partial y} = 0, \quad \Rightarrow \quad p = p(x)
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.
\]

- Steady laminar boundary layer equations on a flat surface (U=const)

 - Bernoulli equation:

 \[
 \frac{1}{2} U^2 + \frac{p}{\rho} = \text{const} \quad \Rightarrow \quad \frac{dp}{dx} = -\rho U \frac{dU}{dx} = 0
 \]

 - Finally we have the following equation:

 \[
 u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2}
 \]

- Boundary conditions:

 \[
 \begin{align*}
 u &= 0 \text{ at } y = 0, \\
 v &= 0 \text{ at } y = 0, \\
 u &\rightarrow U \text{ as } y \rightarrow \infty
 \end{align*}
 \]
Boundary layer equations

• What we have left:

\[\frac{u}{\partial x} \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} \]

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \]

- Boundary conditions:

\[u = 0 \text{ at } y = 0, \]
\[v = 0 \text{ at } y = 0, \]
\[u \to U \text{ as } y \to \infty. \]

• We’re going to use these two equations to derive the Blasius equation – a single ordinary differential equation for laminar boundary flow at zero pressure gradient.
Boundary layer equations

• Similarity solution for boundary layer equations
 - Similarity variable: \[\eta = \frac{y}{\delta} = \frac{y}{(\nu x/U)^{1/2}} \]
 - Stream function: \[\psi = U\delta f(\eta) \]
 \[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \]

- Plugging the similarity variable and stream function to BL equations and using the chain rule for derivatives:

\[f''' + \frac{1}{2} f f'' = 0 \]

- Boundary conditions:

\[f = f' = 0 \quad \text{at} \quad \eta = 0 \]

\[f' = 1 \quad \text{as} \quad \eta \to \infty \]

Third-order ordinary differential equation (ODE) \(\rightarrow \) three first-order ODEs

➢ How to solve? We use Runge-Kutta method with secant method
Boundary layer on a flat surface

- Blasius boundary layer for a 1.0 m/s airflow over a 3-m-long surface
Boundary layer on a flat surface

- Blasius boundary layer for a 1.0 m/s airflow over a 3-m-long surface
 - Velocity profiles:
Boundary layer on a flat surface

- Wall shear stress

\[\tau_w = \mu \frac{\delta u}{\delta y} |y = 0 \]

- Flow separation occurs when

\[\tau_w = 0 \]
What about turbulence?
Direct Numerical Simulations

• Channel geometry
 - x: streamwise, y: wall-normal, z: spanwise

Navier-Stokes equations for an incompressible Newtonian fluid:

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Reynolds number: $Re = \frac{\rho U L}{\mu} = \frac{\text{Inertial}}{\text{Viscous}}$

• The Navier-Stokes equations are solved spectrally using the Fourier (x) – Chebyshev (y) – Fourier (z) spatial discretization

DNS Code: ChannelFlow (J. Gibson) – Modified for this Study
Transition to turbulence

- At around Re = 15,000, transition appears to occur.
Transition to turbulence
Acknowledgement

Funding

• NASA Nebraska Fellowship
• Nebraska EPSCoR Program
• Startup funds from the University of Nebraska-Lincoln

Computing Resources

• Holland Computing Center

Thank you!