Modeling Acute Blood Flow Responses to a Major Arterial Occlusion

Erin Zhao

January 27, 2019
Peripheral Arterial Disease (PAD)

- **Occlusion**: blockage of the blood vessel
- **Collateral vessels**: pre-existing vessels that help redirect blood flow around the blockage

http://healthletter.mayoclinic.com/content/preview.cfm/n/382/t/Peripheral%20artery%20disease/
Objectives

• To model blood flow in the rat hindlimb using vessel wall mechanics
• To compare vessel dynamics before and after occlusion to understand the body’s immediate (acute) response
Anatomic Schematic of Rat Hindlimb
Pa = 140 mmHg
Pv = 0 mmHg

Vascular Network Model

Arciero et al., 2008
Hemodynamic Principles

Q: Blood Flow
R: Resistance
P: Pressure
D: Diameter
L: Length
μ: Viscosity of Blood

Ohm’s Law

\[Q = \frac{\Delta P}{R} \]

Poiseuille’s Law

\[Q = \frac{\pi D^4 \Delta P}{128L \mu} \]

\[R = \frac{128L \mu}{\pi D^4} \]
Vessel Wall Mechanics

Vessel wall is under tension T

$$T_{total} = T_{pass} + AT_{act}^{max}$$

$$T = \frac{PD}{2}$$

Activation, A represents degree of smooth muscle tone

$$0 < A < 1 \quad \uparrow A \rightarrow \downarrow D$$
Activation and Stimulus

Activation is a sigmoidal function

\[A_{\text{total}} = \frac{1}{1 + \exp(-S_{\text{tone}})} \]

\(S_{\text{tone}} \) is the stimulus that determines the level of smooth muscle tone

\[S_{\text{tone}} = C_{myo} T - C_{\text{shear}} \tau - C_{\text{meta}} S_{cr} + C''_{\text{tone}} \]

\[\uparrow S_{\text{tone}} \rightarrow \uparrow A \rightarrow \downarrow D \]
Oxygen Saturation

Krogh cylinder model describes delivery of oxygen to tissues.
Oxygen Saturation

Non-occluded

Distance (cm)

COL, LA, SA, CAP, SV, LV

Low O₂ Demand, High O₂ Demand
Diameters and Activations

\[\frac{dD}{dt} = \frac{1}{\tau _d} \frac{D_c}{T_c} (T - T_{total}) \]

\[\frac{dA}{dt} = \frac{1}{\tau _a} (A_{total} - A) \]

Non-occluded control state assumptions:

- A = 0.5 in LA and SA compartments
- A = 0.99 in collateral

Occluded Assumptions:

- No flow through the femoral artery
Preliminary Results: No Occlusion
Preliminary Results: Occlusion

Solid: Non-occluded
Dashed: Occluded

Graphs showing the relationship between oxygen demand and diameter or activation for different conditions.
Preliminary Results: Vascular Tone

\[S_{\text{tone}} = C_{\text{myo}} T - C_{\text{shear}} \tau - C_{\text{meta}} S_{\text{CR}} + C''_{\text{tone}} \]
Preliminary Results: Blood Flow

Ziegler et al., 2016

![Graph showing blood flow against oxygen demand](image)
Preliminary Results: Blood Flow

Number of Collaterals

Total Calf Blood Flow (mL/min)

Non-occluded

Collaterals

Capillaries

×10^6
Discussion

• Dilation of vessels indicates the body possesses a limited compensatory ability
• Occlusion significantly reduces blood flow and oxygen saturation
• Preliminary results suggest PAD treatments that target the collateral circuit may be more effective
• Addition of chronic vascular responses to current model
Acknowledgements

- Julia Arciero (Mathematics, IUPUI)
- Jared Barber (Mathematics, IUPUI)
- Joseph Unthank (Vascular Surgery, Indiana University School of Medicine)
- Myson Burch (Purdue University)
- Thomas Freestone (IUPUI)
- Emma Brewer (Rose-Hulman Institute of Technology)
- Jordan Pellett (University of Wisconsin-La Crosse)
- Elizabeth Franko (University of Scranton)
- Lauren Lembcke (Clemson University)
- NSF DMS-1654019
- IUPUI Center for Research and Learning