The Game of Cycles: Extended

Heather Baranek, Faculty Advisor: Dr. Shanise Walker

Department of Mathematics, University of Wisconsin-Eau Claire

Motivation

Graph theory is a field of mathematics that can be utilized to model a variety of processes and thus knowing more about them increases our ability to solve a broad range of applications.

Definitions

- **Planar graph**: A collection of vertices and edges such that no two edges cross.
- **Directed graph**: A graph with arrows drawn on some or all edges indicating direction.
- **Sink**: A vertex of a directed graph with all edges connected to that vertex directed towards that vertex.
- **Source**: A vertex of a directed graph with all edges connected to that vertex directed away from that vertex.
- **Cycle cell**: An enclosed area of a graph with nothing inside of it such that every edge enclosing the area is directed the same direction.
- **Involutive Symmetry**: A board has involutive symmetry if there is a non-trivial involution, τ, on the set of vertices of the board such that for any vertex v, τ(τ(v)) = v.
- **Self-involutive edge**: An edge where the involution of an edge is itself.
- **Nowhere-involutive edge**: An edge where no edge of the cell has its partner fixed by the involution.

Goal

Our research team aims to answer questions about the Game of Cycles on various families of planar graphs.

Related Theorems

Theorem 6: [2] Let G be a board with an involution such that each cell is either self-involutive or nowhere-involutive. If there is no self-involutive edge, then Player 2 has a winning strategy. If there is exactly one self-involutive edge whose vertices are not fixed by the involution, then Player 1 has a winning strategy using the mirror-reverse strategy.

Mirror-Reverse Strategy

- If possible to win by completing a cycle, do so.
- If that is not possible, mirror other player's strategy by observing the player's most recent move and playing / \ j, the partner edge of j with its arrow reversed.

Main Results

Theorem: Let G be a board containing two cycles, C_m and C_n, such that C_m and C_n are connected by a single vertex. If m = 3 and n = 3, then Player 2 has a winning strategy. If m = 3 and n > 3, then Player 1 has a winning strategy.

Related Results

- **Cycle Graph C_4 and C_7**
- **Cycle Graphs C_7 and C_9**
- **Complete Graph K_4**
- **Cycle Graph C_6**
- **Cycle Graph with a chord**

Other Results

Theorem: In a two player game played on the 3-Prism and 5-Prism graphs, Player 1 has a winning strategy.

Future Research

- Can we determine an overarching strategy for m connected cycle graphs comprised of n odd cycles and \(p \) even cycles?

Acknowledgements

We would like to acknowledge collaboration with Jonah Amundsen during Academic Year 2019-2020. Also joint work with Dr. Mary Leah Karker and her students: Samuel Adelfiyu, Abigail Daly, Xadia Goncalves, Peter Graziano, and Alison LaBarre at Providence College from Spring 2020 to present.

We would like to thank the University of Wisconsin-Eau Claire Department of Mathematics, the Office of Research and Sponsored Projects, the University of Wisconsin-Eau Claire Foundation, Walter M. Reid First Year Research Fellowship, and the Blugold Fellowship for funding this project.

References