The Explorer-Director Game

Two players control a token on a graph G, starting at a vertex v. Each round, Explorer calls a distance, then Director moves the token to a vertex that distance away.

- Explorer wants to maximize the number of vertices visited.
- Director wants to minimize the number of vertices visited.

$f_d(G, v)$ is the number of unique vertices visited on a graph G during an optimally played game starting at vertex v.

Definitions

Let $G = (V, E)$ be a graph.

- The distance between two vertices $u, v \in V$ is the length of the shortest path between them.
- The eccentricity of a vertex $v \in V$ is the maximum distance between v and any other vertex $u \in V$.
- The radius of G is the minimum eccentricity over $v \in V$.
- The diameter of G is the maximum eccentricity over $v \in V$.
- A set of vertices $A \subset V$ is Director-closed if when the token is at any vertex in the set, regardless of the distance Explorer calls, Director can keep the token in the set.
- A set of vertices $A \subset V$ is Explorer-friendly if no matter where the token is, Explorer has a strategy that will force the token into A regardless of Director’s choices.

Trees

Let G be a tree. For a vertex v, let $diamDist(v)$ be the shortest distance from v to a longest path P of G (a diameter of G). Then

$$f_d(G, v) = diamDist(v) + diam(G) + 1$$

P is Director-closed, so Director’s strategy is to get to P as soon as possible, while Explorer’s strategy is to stay away from P.

Example:

1. Explorer calls distance 1 to visit the vertex adjacent to v.
2. Explorer calls 1 so Director must visit b or w. If Director visits w, Explorer then calls 2 to force the token to b.
3. Now Director can force the token to the diameter for any distance.

All vertices along the diameter are visited like a path graph.

General Results

For any graph $G = (V, E)$ with vertex $v \in V$,

- At the end of the game, the set of visited vertices always contains a Director-closed set. (not necessarily the entire set of visited vertices)
- Lemma of Eccentricity: Let $A \subset V$ be Explorer-friendly. Then
 $$f_d(G, v) \geq \min_{u \in A}ecc(u) + 1.$$
- $f_d(G, v) \geq radius(G) + 1 \geq \frac{diam(G)}{2} + 1$.
- $f_d(G, v) \leq |B|$, where B is any Director-closed subset of V containing v.

Paths

For a path graph P_n with n vertices and any starting vertex v,

$$f_d(P_n, v) = n.$$

Non-Adaptive Explorer Strategies consist of a predetermined list of distances Explorer calls each round.

For path graphs, non-adaptive Explorer strategies can always be used to visit all n vertices in $n - 1$ rounds.

Characteristics of these strategies:

- Explorer calls large distances.
- For paths with an odd number of vertices, unless the token starts at the midpoint, it visits the midpoint last.
- Each round, the token visits a previously unvisited vertex.

Example: Below is the non-adaptive Explorer strategy for odd paths starting at a vertex that is not an endpoint or adjacent to an endpoint.

$$n - 1$$

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V_{n-1} \rightarrow V_{n-1}$$

1. Explorer calls $n - 1 - i$: to visit the furthest endpoint.
2. Explorer calls $n - 1$: to visit the opposite endpoint.
3. Explorer alternately calls $\frac{n}{2}$ and $\frac{n}{2}$ for $2i - 1$ rounds, stopping just before they revisit v_i.
4. Explorer alternately calls $\frac{n}{2}$ and $\frac{n}{2}$ for the remaining $n - 2i - 2$ rounds to visit all remaining vertices.

Note: There is an adaptive Explorer strategy that will visit all vertices in $n - 1$ rounds that depends only on n, not v.

Lattices

Let G be an n by n square lattice where n is odd. Then

$$f_d(G, v) = 2n - 1$$

for any v.

Director can find a path P of length $2n - 1$ through

- any starting vertex
- the center vertex
- the corner closest to v, etc, and its opposite corner.

P is Director-closed

$$f_d(G, v) \leq 2n - 1$$

Two opposite corners are Explorer-friendly since Explorer can always visit a corner u_i by calling $ecc(v)$ for $v \in P$. Since $ecc(u_i) = 2n - 2$, then by the Lemma of Eccentricity, $f_d(G, v) \geq 2n - 2$. Thus, $f_d(G, v) = 2n - 1$.

When n is even, P does not exist since there is no center vertex. Each vertex has exactly one farthest vertex.

Director can find a Director-closed set A of $3n - 4$ vertices consisting of

- two opposite sides V_1
- second row vertices non-adjacent to the opposite sides V_1

$$\Rightarrow f_d(G, v) \leq 3n - 4$$

for $v \in A$.

Future Questions

- What is $f_d(G, v)$ for other types of graphs?
- For what other types of graphs do non-adaptive strategies allow Explorer to reach $f_d(G, v)$ vertices quickly?
- How can we efficiently identify which subsets of a given graph are Director-closed and/or Explorer-friendly?

References

Mentors

Pat Devlin, Yale University
Elin Meger, Université du Québec à Montréal
Abigail Raz, University of Nebraska-Lincoln
in association with the Polymath REU Explorer-Director group

Elaine Danielson, Angela Li
elaine.danielson@montreal.edu, 11.1001N/roou.edu
University of Florida; The Ohio State University