Strategies and Generalizations of the Explorer-Director Game

The Explorer-Director Game

Two players control a token on a graph G, starting at a vertex v. Each round, **Explorer** calls a distance, then **Director** moves the token to a vertex that distance away.

- **Explorer** wants to *maximize* the number of vertices visited.
- **Director** wants to *minimize* the number of vertices visited.

 $f_d(G, v)$ is the number of unique vertices visited on a graph G during an optimally played game starting at vertex v.

Definitions

Let G = (V, E) be a graph.

- The **distance** between two vertices $u, v \in V$ is the length of the shortest path between them.
- The **eccentricity** of a vertex $v \in V$ is the maximum distance between *v* and any other vertex $u \in V$.
- ▶ The **radius** of *G* is the minimum eccentricity over $v \in V$.
- ▶ The **diameter** of *G* is the maximum eccentricity over $v \in V$.
- A set of vertices $A \subset V$ is **Director-closed** if when the token is at any vertex in the set, regardless of the distance Explorer calls, Director can keep the token in the set.
- A set of vertices $A \subset V$ is **Explorer-friendly** if no matter where the token is, Explorer has a strategy that will force the token into A regardless of Director's choices.

Trees

Let G be a tree. For a vertex v, let diamDist(v) be the shortest distance from v to a longest path P of G (a diameter of G). Then

$$f_d(G, v) = diamDist(v) + diam(G) + 1$$

P is Director-closed, so Director's strategy is to get to *P* as soon as possible, while Explorer's strategy is to stay away from *P*.

Example:

- **1.** Explorer calls distance 1 to visit the vertex **a** adjacent to **v**.
- **2.** Explorer calls 1 so Director must visit b or v. If Director visits v, Explorer then calls 2 to force the token to b.
- **3.** Now Director can force the token to the diameter for any distance. All vertices along the diameter are visited like a path graph.

Elaine Danielson, Angela Li

elaine.danielson@ufl.edu, li.10011@osu.edu University of Florida; The Ohio State University

General Results

At the end of the game, the set of visited vertices always contains a Director-closed set. (not necessarily the entire set of visited vertices!)

For a path graph P_n with *n* vertices and any starting vertex *v*,

Non-Adaptive Explorer Strategies consist of a predetermined list of distances Explorer calls each round.

For path graphs, non-adaptive Explorer strategies can always be used to visit all *n* vertices in n - 1 rounds.

Characteristics of these strategies:

For paths with an odd number of vertices, unless the token starts at the midpoint, it visits the midpoint last.

Each round, the token visits a previously unvisited vertex.

Example: Below is the non-adaptive Explorer strategy for odd paths starting at a vertex that is not an endpoint or adjacent to an endpoint. n-1

Note: There is an *adaptive* Explorer strategy that will visit all vertices in n - 1 rounds that depends only on n, not v.

- For any graph G = (V, E) with vertex $v \in V$,
- **Lemma of Eccentricity:** Let $A \subset V$ be Explorer-friendly. Then $f_d(G, v) \ge \min_{u \in A} ecc(u) + 1.$
- ► $f_d(G, v) \ge radius(G) + 1 \ge \frac{diam(G)}{2} + 1.$
- ▶ $f_d(G, v) \leq |B|$, where B is any Director-closed subset of V containing v.

Paths

$$f_d(P_n, v) = n.$$

Explorer calls large distances.

1. Explorer calls n - 1 - i to visit the furthest endpoint. **2.** Explorer calls n-1 to visit the opposite endpoint.

3. Explorer alternately calls $\frac{n+1}{2}$ and $\frac{n-1}{2}$ for 2i - 1 rounds, stopping just before they revisit v_i .

4. Explorer alternately calls $\frac{n-3}{2}$ and $\frac{n-1}{2}$ for the remaining n - 2i - 2 rounds to visit all remaining vertices.

Lattices

Two opposite corners are Explorer-friendly since Explorer can always visit a corner u_i by calling ecc(v) for $v \in P$. Since $ecc(u_i) = 2n - 2$, then by the Lemma of Eccentricity, $f_d(G, v) \ge 2n - 1$. Thus, $f_d(G, v) = 2n - 1$.

When *n* is even, *P* does not exist since there is no center vertex. Each vertex has *exactly one* farthest vertex.

Director can find a **Director-closed** set A of 3n - 4 vertices consisting of \blacktriangleright two opposite sides $s_{i,j}$ second row vertices non-adjacent to the opposite sides w_k $\implies f_d(G, v) \leq 3n - 4$ for $v \in A$

Future Questions

References

Nedev, Z., & Muthukrishnan, S. (2008). The Magnus-Derek Game. *Theoretical Computer Science*, *393*, 124-132.

Mentors

Pat Devlin, Yale University Erin Meger, Université du Québec à Montréal Abigail Raz, University of Nebraska-Lincoln in association with the Polymath REU Explorer-Director group

▶ What is $f_d(G, v)$ for other types of graphs? ► For what other types of graphs do non-adaptive strategies allow Explorer to reach $f_d(G, v)$ vertices quickly? ► How can we efficiently identify which subsets of a given graph are Director-closed and/or Explorer-friendly?