The Explorer-Director Game

Two players control a token on a graph G, starting at a vertex v. Each round, Explorer calls a distance, then Director moves the token to a vertex that distance away.

- Explorer wants to maximize the number of vertices visited.
- Director wants to minimize the number of vertices visited.
$f_{d}(G, v)$ is the number of unique vertices visited on a graph G during an optimally played game starting at vertex v

Definitions

Let $G=(V, E)$ be a graph.
The distance between two vertices $u, v \in V$ is the length of the shortest path between them.

- The eccentricity of a vertex $v \in V$ is the maximum distance between v and any other vertex $u \in V$.
- The radius of G is the minimum eccentricity over $v \in V$.
- The diameter of G is the maximum eccentricity over $v \in V$.
- A set of vertices $A \subset V$ is Director-closed if when the token is at any vertex in the set, regardless of the distance Explorer calls, Director can keep the token in the set.
- A set of vertices $A \subset V$ is Explorer-friendly if no matter where the token is, Explorer has a strategy that will force the token into A regardless of Director's choices.

Trees

Let G be a tree. For a vertex v, let $\operatorname{diamDist}(v)$ be the shortest distance from v to a longest path P of G (a diameter of G). Then

$$
f_{d}(G, v)=\operatorname{diamDist}(v)+\operatorname{diam}(G)+1
$$

\boldsymbol{P} is Director-closed, so Director's strategy is to get to P as soon as possible, while Explorer's strategy is to stay away from P.
Example:

1. Explorer calls distance 1 to visit the vertex a adjacent to v.
2. Explorer calls 1 so Director must visit b or v. If Director visits v, Explorer then calls 2 to force the token to b.
3. Now Director can force the token to the diameter for any distance. All vertices along the diameter are visited like a path graph.

General Results

For any graph $G=(V, E)$ with vertex $v \in V$,
At the end of the game, the set of visited vertices always contains a Director-closed set. (not necessarily the entire set of visited vertices!)

- Lemma of Eccentricity: Let $A \subset V$ be Explorer-friendly. Then $f_{d}(G, v) \geq \min _{u \in A} e c c(u)+1$.
- $f_{d}(G, v) \geq \operatorname{radius}(G)+1 \geq \frac{\operatorname{diam}(G)}{2}+1$.
- $f_{d}(G, v) \leq|B|$, where B is any Director-closed subset of V containing v.

Paths

For a path graph P_{n} with n vertices and any starting vertex v,

$$
f_{d}\left(P_{n}, v\right)=n .
$$

Non-Adaptive Explorer Strategies consist of a predetermined list of distances Explorer calls each round

For path graphs, non-adaptive Explorer strategies can always be used to visit all n vertices in $n-1$ rounds.

Characteristics of these strategies:

- Explorer calls large distances.
- For paths with an odd number of vertices, unless the token starts at the midpoint, it visits the midpoint last.
- Each round, the token visits a previously unvisited vertex.

Example: Below is the non-adaptive Explorer strategy for odd paths starting at a vertex that is not an endpoint or adjacent to an endpoint.

1. Explorer calls $n-1-i$ to visit the furthest endpoint.
2. Explorer calls $n-1$ to visit the opposite endpoint.
3. Explorer alternately calls $\frac{n+1}{2}$ and $\frac{n-1}{2}$ for $2 i-1$ rounds, stopping just before they revisit v_{i}.
4. Explorer alternately calls $\frac{n-3}{2}$ and $\frac{n-1}{2}$ for the remaining $n-2 i-2$ rounds to visit all remaining vertices.

Note: There is an adaptive Explorer strategy that will visit all vertices in $n-1$ rounds that depends only on n, not v.

Lattices

Let G be an n by n square lattice where n is odd. Then

$$
f_{d}(G, v)=2 n-1 \quad \text { for any } v
$$

Director can find a path P of length $2 n-1$ through

- $\quad v$, any starting vertex
- the center vertex c
the corner closest to v, u_{1}, and its opposite corner u_{2}

\boldsymbol{P} is Director-closed

$\Longrightarrow f_{d}(G, v) \leq 2 n-1$
Two opposite corners are Explorer-friendly since Explorer can always visit a corner u_{i} by calling $\operatorname{ecc}(v)$ for $v \in P$. Since $\operatorname{ecc}\left(u_{i}\right)=2 n-2$, then by the Lemma of Eccentricity, $f_{d}(G, v) \geq 2 n-1$. Thus, $f_{d}(G, v)=2 n-1$. When n is even, P does not exist since there is no center vertex. Each vertex has exactly one farthest vertex.
Director can find a Director-closed set A of $3 n-4$ vertices consisting of

- two opposite sides $s_{i, j}$
- second row vertices non-adjacen to the opposite sides w_{k}
$\Longrightarrow f_{d}(G, v) \leq 3 n-4$ for $v \in A$

Future Questions

- What is $f_{d}(G, v)$ for other types of graphs?
- For what other types of graphs do non-adaptive strategies allow Explorer to reach $f_{d}(G, v)$ vertices quickly?
- How can we efficiently identify which subsets of a given graph are Director-closed and/or Explorer-friendly?

References

Nedev, Z., \& Muthukrishnan, S. (2008). The Magnus-Derek Game. Theoretical Computer Science, 393, 124-132.

Mentors

Pat Devlin, Yale University
Erin Meger, Université du Québec à Montréal
Abigail Raz, University of Nebraska-Lincoln
in association with the Polymath REU Explorer-Director group

Elaine Danielson, Angela Li

elaine.danielson@ufl.edu, li.10011@osu.edu
University of Florida; The Ohio State University

