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What is Graph Spectral Clustering? The Heat Equation } Diffusion and Clustering
Graph spectral clustering is a method of partitioning data Definition (The Heat Equation) Below, we cluster some points according to the diffusion
using spectral properties of its Laplacian matrix. process modeled by the heat equation:
Algorithm We define the heat equation as_g—}’ = Au, Where u(x, t) e
1. From data, construct a graph using a similarity metric. outputs the temperature at position x and time ¢. | | I
2. Construct the Laplacian matrix L := D — A where D is . . r .
the degree matrix and A is the adjacency matrix. With boundary conditions u(0, t) = u(1, t) = 0 and the o T i
3. Populate columns of U with the smallest k eigenvectors initial condition u(x,0) = f(x), solutions are of the form I =~ 1l =" I
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of L, where k_ is the nymber of clusters. 22, . (a) u(x, t = 0) (b) u(x, t = 0.0041) (c) ulx, t = 0.0091)
4. Run a clustering algorithm (k-means) on the rows of U. u(x, t) = Z A, e . € - o |
_ _ —— —~— igure: Contour maps of u. Red stars indicate local maxima.
5. Since each row of U corresponds to a data point, we n=—00 frequency  operator -
get our clusters. component  Fourier basis (a) This graph represents our initial data points, each with
. $ 1 different random initial temperatures.
_%e - E o® i . _ . ..
o = — U=r¢ {{ of where A, = | f(x)e™dx. (b) The contours pick out three distinct clusters.
/ — = o
J . .
1. 2 3. 4, 5, ° | (c) As time goes on, boundary conditions enforce that the
Figure: Steps of the graph spectral clustering algorithm . . heat Of the entire region decays to zero, eventua||y glVIﬂg
| Connecting the Heat Equation and GSC | us a single cluster
Why Graph Spectral Clustering? » The more similar two points are, the more influence they Further Questi
| have on each other with respect to temperature change. I e
Graph spectral clustering is computationally expensive. _ b - . - .
WhS shguld we use it? 5 P Yy &P > Let f;; be the temperature of data point / at time t, then » In [3], Sahai introduces a distributed clustering method
| of; ; using the wave equation.
Graph Spectral Clustering K-Means++ — = Z (6t— f;t)WU o ]
ot & » Thus, it is natural to wonder which other PDEs lend
oo’ Jjilij)eE :
. 5. o | | themselves to clustering.
¢ ° 4 » Combining these equations for all datapoints, we get
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