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What is Graph Spectral Clustering?

Graph spectral clustering is a method of partitioning data
using spectral properties of its Laplacian matrix.

Algorithm

1. From data, construct a graph using a similarity metric.
2. Construct the Laplacian matrix L := D − A where D is

the degree matrix and A is the adjacency matrix.
3. Populate columns of U with the smallest k eigenvectors

of L, where k is the number of clusters.
4. Run a clustering algorithm (k-means) on the rows of U .
5. Since each row of U corresponds to a data point, we

get our clusters.

L = D − A U = e1 e2 e1 e2
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Figure: Steps of the graph spectral clustering algorithm

Why Graph Spectral Clustering?

Graph spectral clustering is computationally expensive.
Why should we use it?

I Popular clustering algorithms like k-means fail to
appropriately cluster data sets like the one above, where
Euclidean distance isn’t the best metric for clustering.

I Graph spectral clustering effectively clusters the data by
grouping points that quickly diffuse heat to each other,
but not other points.

The Heat Equation

Definition (The Heat Equation)

We define the heat equation as ∂u
∂t = ∆u, where u(x , t)

outputs the temperature at position x and time t.

With boundary conditions u(0, t) = u(1, t) = 0 and the
initial condition u(x , 0) = f (x), solutions are of the form

u(x , t) =
∞∑

n=−∞An · en
2π2t︸︷︷︸

frequency

component

· e inπx︸︷︷︸
operator,

Fourier basis

where An =

∫ 1

0

f (x)e inπxdx .

Connecting the Heat Equation and GSC

I The more similar two points are, the more influence they
have on each other with respect to temperature change.

I Let fi ,t be the temperature of data point i at time t, then

∂fi ,t
∂t

=
∑

j :(i ,j)∈E

(fj ,t − fi ,t)wij

I Combining these equations for all datapoints, we get
∂ft
∂t

= −Lft =⇒ ft+1 − ft = −Lft =⇒ ft = (I − L)tf0

I Let vi be eigenvectors and λi be the eigenvalues of L.
These form a basis, so ft can be rewritten as

ft =
n∑

i=1

〈f0, vi〉 · (1 − λi)
t︸ ︷︷ ︸

frequency

· vi︸︷︷︸
operator

I The smallest eigenvalues of L represent the slowest
diffusing heat distributions. This picks out clusters with
high intracluster similarity and intercluster disimilarity.

Diffusion and Clustering

Below, we cluster some points according to the diffusion
process modeled by the heat equation:

(a) u(x , t = 0) (b) u(x , t = 0.0041) (c) u(x , t = 0.0091)

Figure: Contour maps of u. Red stars indicate local maxima.

(a) This graph represents our initial data points, each with
different random initial temperatures.

(b) The contours pick out three distinct clusters.

(c) As time goes on, boundary conditions enforce that the
heat of the entire region decays to zero, eventually giving
us a single cluster.

Further Questions

I In [3], Sahai introduces a distributed clustering method
using the wave equation.

I Thus, it is natural to wonder which other PDEs lend
themselves to clustering.
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