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Results continued

Background

The Lotka-Volterra Model
The Lotka-Volterra (L-V) model is a classic approach to describe the

population dynamics between predators and prey. As predator and prey
species compete, their populations oscillate, creating a “boom and bust”
cycle controlled by environmental limits.
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While the competition described in the original equations can be made to
represent cooperation by introducing a sign change, this fails to convey the
complexity of a relationship that is simultaneously beneficial and deleterious.
This type of interaction falls under the term of mutualism. In general,
mutualistic relationships are those in which two species benefit from one
another’s presence.

Mutualism between Yucca Moths & Yucca Plants
The yucca plant-moth system is a prime example of an

obligate mutualistic relationship (one species cannot
survive without the other). The plants depend on moths
for pollination, while the moth larvae rely on yucca plant
fruit for sustenance after hatching. Holland and
DeAngelis [1] propose a sufficiently detailled model
describing the interaction between the plants and
moths. Using [1] as a basis for our own work, we sought
to establish a definiive model of mutualism, with ——=E4
applications in ecology and wider fields, such as y
mathematical finance. = :

We reduced the Holland-DeAngelis model to two dimensions and substituted
heuristic descriptions with standard universal functions such as the logistic
function, which have been extensively studied in the mathematical literature
[2]. Additionally, we employed simulations of ordinary differential equations
and discrete-time difference equations. The tools of choice were Mathematica
and R, both of which are mathematical programming languages capable of
solving dynamical systems numerically. In particular, we made use of their
ability to do parameter searches as we explored the phase space of the
mathematical models of species competition and cooperation. We also
evaluated the stability of our systems using the Jacobian.
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As a first step, we did not distinguish between flowers and plants. We set
flowers = plants, and focused only on the population of plants and moths.
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The above system resulted in populations that declined exponentially to
approach near-zero equilibrium points. We also attempted to reduce the
number of parameters (i.e. set ad = y), and remove the squared m in the moth
population equation, but the steep decline of both populations remained.
When we instead changed the initial population sizes (and later, parameters)
for moths and plants, we were able to generate two interestingly stable
systems.
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Following the format of the model in [1], we designed a model in which yucca

plant fruit production was described by a difference of exponentials.
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With further adjustments to the model, we found that the approach taken to
reach stable populations could be highly usual. For example, as pictured in
the graph below, moth and plant population sizes initially move away from
equilibrium before reaching their final, stable values. The ratio of plants to
moths is peculiar as well, even though it later settles towards a fixed value.
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With our final model, we aimed to develop a system which more accurately
represented the life cycles of yucca plants and moths. This model consists of
three equations, each describing the dynamics of plant, moth, and fruit
populations, respectively. An additional model also included an equation
describing larvae population dynamics, so as to separate larvae and adult
moths as in an age-structured population diagram. As the model equations
are multiplicative, and hence nonlinear, analytical solutions were not possible,
so we focused on numerical approaches for finding solutions.
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Remaining Questions

In the future, we would like to further explore the
stability of the various yucca plant-moth models
conceived over the course of our investigation. For
example, could it be proven that initializing a
system with only positive parameters results in a
system that stays positive? We also aim to answer
the question of whether any of our models are
relevant to other real-life examples of mutualism
and cooperation, or solely the moths and plants at
hand.

,‘./

AN

Z -7,‘)\\%

Laura Stemmler- Istemmle@andrew.cmu.edu



