A Reinforcement Learning Approach to Packet Routing on a Dynamic Network

Huanxi Liu (University of California, San Diego), Anthony Meza (University of California, Irvine), Christina Tran (Harvard University), Hwai-Liang Tung (Brown University)

Abstract
Finding optimal packet routing strategies for real world dynamic networks is a challenging but largely open problem. In this work, we answer two main questions: (1) Can the reinforcement learning techniques Q-learning and Deep Q-learning be applied to the packet routing problem in order to reduce congestion and packet delivery times in comparison to the traditional shortest path algorithms? (2) Does this advantage hold for many different types of networks? To answer these questions, we develop a model for simulating packet routing on a dynamic network, in which a network’s adjacencies and edge weights change in discrete steps. We then use this model to quantify each routing method’s performance across a wide variety of connectivity regimes, where network size, edge distribution, and network dynamics are systematically varied. Overall, Q-learning and Deep Q-learning consistently lower congestion and decrease packet delivery times compared to the shortest path algorithm on all tested networks. From this, we offer general guidelines for optimizing routing across various network topologies, and aggregate method-specific results for each topology regime. This work was part of UCLA RIAP 2020.

Introduction

Motivation: Inefficiencies in satellite routing
Satellite networks are used for tasks such as GPS and communications. To perform these efficiently and reliably, suitable algorithms must be developed to decide how a packet of information should travel from satellite to satellite to reach its destination. Traditional algorithms direct packets on the calculated shortest path, but these cannot adapt to changes in satellite connections as they leave and re-enter service range. Furthermore, in a high-traffic network, they cause congestion. In a few central satellites while using a peripheral satellites, slowing delivery time of these packets. We hypothesize that using machine learning to teach a satellite network how to route packets will result in faster delivery and less congestion.

Our goal: Develop a reinforcement learning-based program for routing data in a dynamic network.

Methodology

Dynamic Network Model
We developed a dynamic network model in Python with the following characteristics:
- At each discrete time step:
 - Edges are randomly deleted/Restored
 - New packets are injected into the network
 - Edge weights change in a simulated manner
- Each node can send up to a fixed number of packets, \(K \)
- Each edge weight represents transmission delay for a packet traveling along that path
- Each node can only hold \(K \) packets at any given time step
- Packets are initialized randomly throughout the network with a random destination

Shortest Path Routing
At each time step, recompute each packet’s shortest path using Dijkstra’s algorithm.

Q-learning
The machine learning algorithm first randomly sends packets and is given a reward based on how much closer the packets get to their destination and how much congestion it causes. Based on these rewards, it estimates a quality value or Q-value for each possible routing decision. After it has sufficiently learned about the satellite network, it can choose actions based on the highest Q-value.

Deep Q-learning
Like Q-learning, the algorithm estimates Q-values in order to make decisions. However, instead of simply storing them in a table, a neural network is used and repeatedly optimized in order to efficiently estimate these Q-values. We use a simple neural network with 2 linear layers with ReLU activations.

Results

In terms of delivery time, both reinforcement learning methods strongly outperform shortest path. This pattern is resilient to changes in network topology, for example the size of the network, the capacity of each node, the average degree, and the type of random network. Q-routing and Deep Q-routing perform comparably.

Conclusion

- Q-learning is able to deliver packets faster and reduce congestion compared to shortest path
- Where shortest path cannot avoid potential packet delivery, Q-learning always finishes, demonstrating its reliability under high stress networks
- Deep Q-learning outperforms Q-learning at low network loads
- The current simplistic implementation of deep learning delivers packets more slowly than regular Q-learning
- Training time for a Deep Q-routing algorithm is significantly longer
- Reinforcement learning outperforms shortest path regardless of network topology
- Deep Q-routing and Q-routing have nearly identical delivery times across network topologies
- Training times increase with the complexity of the graph structure

Recommendations

- Deep Q-routing, performed with more powerful hardware and with some additional tuning of its learning parameters, has the potential to outperform Q-routing on all network sizes and types
- Potential improvements to the Deep Q-routing model include:
 - Switching to Double Deep Q-learning for better estimation of Q-values
 - Feeding additional inputs into the neural network
 - The current neural network accepts only the current position and destination; more information could lead to more complex routing decisions that take into account entire network dynamics (e.g., queue lengths of neighbor networks and growth speed of nodes)
- Additional lines of investigation include:
 - Deep reinforcement learning for packet routing also outperforms shortest path in very small networks
 - Can reinforcement learning be resilient to large fluctuations in the number of packets?

Acknowledgements
This project was supported by the Institute for Pure and Applied Mathematics as well as the Aerospace Corporation, under the mentorship of Tom Merhi (University of California, Los Angeles)