Utilizing Statistics and Machine Learning to Detect Events and Summarize Basketball Game Footage

Kenna Zimmerman, B.S. Computer Science

Figure 1: Closeups of players and coaches are often shown but are not relevant to events in the game.

Figure 2: Example of a frame being processed

Table 1: Results of statistical analysis on the difference in pixel difference and sound level between events and non-events. Green cells indicate $p \leq 0.05$

<table>
<thead>
<tr>
<th>Event</th>
<th>Movement p-val</th>
<th>Sound p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Throw</td>
<td>2.01E-08</td>
<td>6.28E-17</td>
</tr>
<tr>
<td>Foul</td>
<td>4.96E-04</td>
<td>4.96E-12</td>
</tr>
<tr>
<td>Enters Game</td>
<td>1.65E-03</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>Misses 2-pt</td>
<td>2.00E-06</td>
<td>1.25E-03</td>
</tr>
<tr>
<td>Misses 3-pt</td>
<td>2.50E-02</td>
<td>5.08E-03</td>
</tr>
<tr>
<td>Makes 2-pt</td>
<td>1.00E-05</td>
<td>6.15E-03</td>
</tr>
<tr>
<td>Timeout</td>
<td>2.62E-01</td>
<td>5.19E-02</td>
</tr>
<tr>
<td>Makes 3-pt</td>
<td>1.10E-03</td>
<td>1.10E-01</td>
</tr>
<tr>
<td>Turnover</td>
<td>2.70E-02</td>
<td>1.46E-01</td>
</tr>
<tr>
<td>Violation</td>
<td>7.98E-01</td>
<td>2.53E-01</td>
</tr>
<tr>
<td>Rebound</td>
<td>3.80E-08</td>
<td>9.63E-01</td>
</tr>
</tbody>
</table>

• The NBA yields billions of dollars each year
• Games average 2+ hours, with up to 13 games a day
• Busy fans can struggle to catch all their own teams’ games, let alone all 30 teams
• Much of the game footage is irrelevant or uneventful
• Highlights are entertaining but don’t provide entire summaries of games

Goals

• Create a computer model that distills games into only the most exciting and pertinent events
• Maintain the essence of games by playing clips in sequential order and retaining all important events

Methods

• My proposed model takes in a video file of a full-length basketball game. Every 10th frame is then analyzed, and the following data is recorded:
 • Timestamp of frame
 • Quarter and time left (via OCR model)
 • Camera angle type (close-up or profile, via machine learning model)
 • Volume (in dBFS, closer to zero = louder)
 • Camera movement

• Certain events are more correlated with sound and frame differences than others, as shown in Table 1.
• Then, the most exciting clips are chosen by ranking the sound and movement measurements
• These clips are then played sequentially, without including any frames classified as closeups

Preliminary Results

• Summary created where clips selected on sound and movement data: youtu.be/qKqVldvmsdM
 • Includes many irrelevant clips and clips that run for too long, yet also excludes many relevant clips
• Summary created where clips selected using “play-by-play” data on the game: youtu.be/cJcVgqv1cOQ
 • Much more relevant selections than sound and movement alone, depends on data outside video

Conclusion / Next Steps

• First results are promising for creating comprehensive summaries of many NBA games.
• Further work includes:
 • Improving selection of beginnings and endings of clips by incorporating sound/movement
 • Automating the entire process (including downloading video and play-by-play data)
 • Adding explanations of what event is taking place in the clip and displaying relevant statistics
• Potential real-world applications of this model are:
 • Website or mobile app where users can watch these summaries
 • Partnership with NBA or other sports associations. Would allow for use of copyrighted footage
 • Potential use of model in NCAA basketball or different sports

References