Elliptic Curves and the Probability of Prime Torsion

Zoe Daunt

Northeastern University

Saturday, January 23rd, 2021
Let k be an algebraically closed field.

Definition: For $n \in \mathbb{Z}, \geq 0$, we define projective n-space as the quotient of $k^{n+1} - \{0\}$ by the equivalence relation \sim, where $a \sim b \iff \exists \lambda \in k^\times$ such that $b = \lambda a$

Notation: Let $q : k^{n+1} - \{0\} \to \mathbb{P}^n$ be the quotient map which takes (a_0, \ldots, a_n) in $k^{n+1} - \{0\}$ to $(a_0 : \ldots : a_n)$

Examples:

i. $\mathbb{P}^0 = (k^1 - \{0\})/\sim = \{(1)\}$, a 1-point set

ii. $\mathbb{P}^1 = \{(a_0, a_1) \in k^2 : (a_0, a_1) \neq (0, 0)\}/\sim = \{(a : 1) : a \in k\} \sqcup \{(1 : 0)\} = \mathbb{A}^1 \sqcup \{\infty\}$

iii. $\mathbb{P}^n = \{(a_0 : \ldots : a_{n-1} : 1) : a_0, \ldots, a_{n-1} \in k\} \sqcup \{(a_0 : \ldots : a_{n-1} : 0) : 0 \neq (a_0, \ldots, a_{n-1} \in k^n)\} = \mathbb{A}^n \sqcup \mathbb{P}^{n-1}$
Projective Spaces

\[\mathbb{P}^1 = \{(a : 1) : a \in k\} \sqcup \{(1 : 0)\} = \mathbb{A}^1 \sqcup \{\infty\} \]
The **Projective Plane** is the set of triples \([a_0, a_1, a_2]\) with \(a_0, a_1, a_2\) not all zero with the following equivalence relation \(\sim\):

\[
[a_0, a_1, a_2] \sim [a'_0, a'_1, a'_2] \text{ if } a_0 = \lambda a'_0, a_1 = \lambda a'_1, a_2 = \lambda a'_2 \text{ for some } \lambda \neq 0.
\]

<table>
<thead>
<tr>
<th>Algebraic definition of (\mathbb{P}^2)</th>
<th>Geometric definition of (\mathbb{P}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{([a_0, a_1, a_2]: a_0, a_1, a_2 \text{ not all zero})} (\sim)</td>
<td>(\mathbb{A}^2 \cup \mathbb{P}^1)</td>
</tr>
</tbody>
</table>
| \([a_0, a_1, a_2]\) \(\rightarrow\) \[
\begin{cases}
\left(\frac{a_0}{a_2}, \frac{a_1}{a_2}\right) \in \mathbb{A}^2 & \text{if } a_2 \neq 0 \\
[a_0, a_1] \in \mathbb{P}^1 & \text{if } a_2 = 0
\end{cases}
\] | \([x, y, 1] \leftrightarrow (x, y) \in \mathbb{A}^2\) |
| \([A, B, 0]\) \(\leftarrow\) | \([A, B] \in \mathbb{P}^1\) |

Projective Spaces

\[\mathbb{P}^2 = \mathbb{A}^2 \sqcup \mathbb{P}^1, \text{ which is our line at } \infty \]
A cubic plane curve in the projective plane $\mathbb{P}^2(k)$ is defined by the set of solutions to the following equation

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$

where $a, b, c, \ldots, i, j \in k$

An elliptic curve E has the form

$$E : y^2 = x^3 + Ax + B$$

with $A, B \in k$

An elliptic curve is a smooth projective curve of genus 1 with a distinguished point.
If a curve E is of the form

$$E : F(x, y) = 0$$

It’s rational points are denoted by

$$E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p \text{ and } F(x, y) = 0\}$$
Examples

From Bezout’s theorem, every line in the projective plane intersects an elliptic curve in three points, counting multiplicity.

\[y^2 = x^3 - 4x + 6 \]

over \(\mathbb{R} \)

\[y^2 = x^3 - 4x + 6 \]

over \(\mathbb{F}_{197} \)
Group Law on Elliptic Curves

- Identity: the point \((0 : 1 : 0)\) at infinity
- Inverse: the inverse of point \(P = (x : y : z)\) is the point \(-P = (x : -y : z)\)
- Commutativity: \(A + B = B + A\)
- Associativity: \(A + (B + C) = (A + B) + C\)
An isogeny $\phi : E_1 \to E_2$ of elliptic curves defined over k is a non-constant rational map that sends the distinguished point of E_1 to the distinguished point of E_2.
Examples

1. The negation map $\phi_1 : P \to -P$, where $(x : y : z) \mapsto (x : -y : z)$

2. The multiplication-by-n map,

$$[n] : E \to E$$

$$P \mapsto n \cdot P$$

3. The Frobenius endomorphism: Let \mathbb{F}_p be a finite field of prime order p, the Frobenius endomorphism $\pi : \overline{\mathbb{F}_p} \to \overline{\mathbb{F}_p}$ is the map $x \mapsto x^p$
Let E/k be an elliptic curve of characteristic $p > 0$, p prime.

$E[n]$ is the n-torsion subgroup of E consisting of all points P in $E(k)$ such that $nP = 0$, i.e. the kernel of $[n]$.

$$E[n] = \{ P \in E(k) : nP = 0 \}$$

$$E(k)[n] = \{ P \in E(k) : nP = 0 \}$$
Goal: Determine the probability that a random elliptic curve E/\mathbb{F}_p has an \mathbb{F}_p point of prime order ℓ, where p is either a fixed prime much larger than ℓ, or a prime varying over some large interval.
Goal: Determine the probability that a random elliptic curve E/F_p has an F_p point of prime order ℓ, where p is either a fixed prime much larger than ℓ, or a prime varying over some large interval.

- "Random Elliptic Curve E/F_p": Random A and B for $y^2 = x^3 + Ax + B$

- An F_p-point is a point on E/F_p with coordinates in F_p

- An F_p point, say P, of order ℓ is an ℓ-torsion point ($\ell \cdot P = 0$) with coordinates in F_p.
For a fixed p, we need to consider two cases: when $p \equiv 1 \mod \ell$ and when $p \not\equiv 1 \mod \ell$. From part a, we know that there are $\ell(\ell^2 - 1)$ matrices in $GL_2(\mathbb{F}_\ell)$ with determinant $p \mod \ell$.

For $p \equiv 1 \mod \ell$, there are ℓ^2 possibilities, and thus

$$Pr_{\text{fixed} \equiv 1} = \frac{\ell^2}{\ell(\ell^2 - 1)}$$

For $p \not\equiv 1 \mod \ell$, there are $\ell^2 + \ell$ possibilities, and thus

$$Pr_{\text{fixed} \not\equiv 1} = \frac{\ell^2 + \ell}{\ell(\ell^2 - 1)}$$
Probability of ℓ-torsion: STEP 3

For varying p, we use the probabilities we just found for fixed p and incorporate the probabilities of the occurrence of each $p \mod \ell$. We assumed each value of $p \mod \ell$ occurs equally often, so the probability that $p \equiv 1 \mod \ell$ is

$$Pr(p \equiv 1) = \frac{1}{\ell - 1}$$

And the probability that $p \not\equiv 1 \mod \ell$ is

$$Pr(p \not\equiv 1) = \frac{\ell - 2}{\ell - 1}$$

Therefore our total probability of ℓ-torsion for varying p is

$$Pr(\ell\text{-torsion}) = \frac{\ell^2}{\ell(\ell^2 - 1)} \times \left(\frac{1}{\ell - 1}\right) + \frac{\ell^2 + 1}{\ell(\ell^2 - 1)} \times \left(\frac{\ell - 2}{\ell - 1}\right)$$
Combinatorial Formula

\[f(\ell) = \frac{\ell^2}{\ell(\ell^2 - 1)} \times \left(\frac{1}{\ell - 1} \right) + \frac{\ell^2 + l}{\ell(\ell^2 - 1)} \times \left(\frac{\ell - 2}{\ell - 1} \right) = \frac{\ell^2 - 2}{\ell^3 - \ell^2 - \ell + 1} \]

\[f(3) = \frac{7}{16} \]
\[f(5) = \frac{23}{96} \]
\[f(7) = \frac{47}{288} \]

Sage Script

For varying \(p \), probability of 3-torsion is 7/16
For varying \(p \), probability of 5-torsion is 23/96
For varying \(p \), probability of 7-torsion is 47/288
Public Key Cryptography

ALICE
- private
- public

plaintext

encrypt

cyphertext

send

snooping

EVE

BOB
- public
- private

plaintext

decrypt

cyphertext
Probability of ℓ-torsion: Applications

Public Key Cryptography

The Discrete Logarithm Problem: Let G be a group and let $g \in G$ be an element of finite order n. Given a power h of g, the discrete logarithm problem is to find an exponent $x \in \mathbb{Z}/(n)$ with $g^x = h$.
The Elliptic Curve Discrete Logarithm Problem: Let E be an elliptic curve defined over \mathbb{F}_p. Given $P, Q \in E(\mathbb{F}_p)$, find an integer x such that $xP = Q$.

Probability of ℓ-torsion: Applications