Using Modeling to Characterize Patients with Pulmonary Hypertension

Mariam Kharbat (NC State University)
Nebraska Conference for Undergraduate Women in Mathematics
Mentors: Mette Olufsen & Amanda Colunga
Pulmonary hypertension

- **Pulmonary hypertension** (PH) is high blood pressure (≥ 25 mmHg) in the pulmonary arteries
- Impact on the *structure* of the network
 - Blood vessels harden
 - Pulmonary vascular resistance increases
- PH is a chronic and progressive disease with no cure
Data

• Pressure measurements from right heart catheterization and a pressure cuff
 – **Time-varying data** from right atrium, right ventricle, pulmonary arteries, and pulmonary artery wedge
 – **Static data** (max and min) from systemic arteries and pulmonary veins

• Blood flow measurements for cardiac output (CO) from Swan-Ganz catheter

Figure: Right heart catheterization pressure waveforms
Cardiovascular Model

Compartment model analogous to an electric circuit

- Pressure p (mmHg) – Voltage
- Flow q (mL/s) – Current
- Volume V (mL) – Charge
- Resistance R (mmHg·s/mL) – Resistance
- Compliance C (mL/mmHg) – Capacitance

25 parameters and 8 states
Model Equations

Conservation of volume
\[\frac{dV_{s,i}}{dt} = q_{in} - q_{out} \]

Ohm's law
\[q_i = \frac{p_{in} - p_{out}}{R_i} \]
\[q_{valve} = \begin{cases}
q_i & \text{if } p_{in} > p_{out} \\
0 & \text{otherwise}
\end{cases} \]

Pressure-volume relation
\[V_i - V_{un,i} = C_i(p_{int} - p_{ext}) \]

Pressure in the heart
\[p_h = E_h(t)(V_h - V_{un,h}) \]

with time-varying elastance function \(E_h(t) \)

\[\square \text{ dynamic RHC data} \quad \star \text{ static data} \]
Parameter Subset Selection

- Sensitivity matrix and ranking
 \[S = \begin{pmatrix} S_{11} & \ldots & S_{1n} \\ \vdots & \ddots & \vdots \\ S_{n1} & \ldots & S_{nn} \end{pmatrix} \text{ for } i, j = 1 \ldots n \]
 where \(S_{i,j} = \frac{\partial y(t_i, \theta)}{\partial \theta_j} \)

- Correlation analysis
 \[\widetilde{c}_{ij} = \frac{C_{ij}}{\sqrt{C_{ii}C_{jj}}} < \gamma \quad C = (S^T S)^{-1} \]

Figure: Parameters ranked most to least sensitive
Parameter Inference

- Optimization - use the Levenberg Marquardt method to minimize the least squares cost, J_i.

$$J_i = r_i^t r_i,$$

$r_i = r_1, r_2$

- Residual Functions - capture the relative differences between data and model.

$r_1 = r_s$ [static values only]

$r_2 = [r_s, r_{ra}, r_{rv}, r_{pa}]$ [static and dynamic values]

$$r_s = \frac{1}{\sqrt{N_s}} \frac{y - y^d}{y^d}$$
Treatment

- Simulate 3 types of PH treatments to improve hemodynamic predictions
 1. Vasodilation drugs
 2. Surgical intervention (BPA)
 3. Combination of both types
- Simulate various treatment intensities by adjusting parameters related to PH
 - reducing resistance
 - increasing compliance
- Mean pulmonary arterial pressure is computed and compared to normotensive predictions

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R_p)</td>
</tr>
<tr>
<td>Vasodilator</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>BPA</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>BPA with vasodilator</td>
<td>(\downarrow)</td>
</tr>
</tbody>
</table>
Results

- Subset selection analysis
 - Right side heart parameters most influential for r_1
 - T_{crv}, T_{rrv} and τ_{cra} are the most influential for r_2
 - $[R_{ava}, R_{mva}, R_{pva}, R_{pv}, R_{sv}]$ are consistently noninfluential

- Model predictions
 - r_1 improves CO and static max/min prediction
 - r_2 improves RA, RV (drastically) and PA (marginally) fit to waveforms

- Treatment
 - Normotensive PA pressure ranges (below 20 mmHg) were achieved for T5 and T8: “cured” after treatment of Patients 3 and 4
Discussion

- Using surgery, CTEPH is the only PH disease that can be “cured”
- Predicting effects of PH treatments on both the pulmonary and systemic arterial side
- Overall, model outcomes are consistent with physiological understanding of the disease
 - PH induces increased PVR, decreased PAC
 - Elevated minimum RV elastance, leading to increase mPAP
- Further work
 - Using our model to observe patient reactions to exercise
 - Developing a model selection program to better differentiate PH severities
Acknowledgements

Dr. Melanie Brewis and Dr. Martin Johnson (data)
Dr. Sudarshan Rajagopal (data)

National Security Agency (funding)
NC State University (REU host)

Contact: mkharba@ncsu.edu