Effects of Mars’ Chaotic Obliquity on Ice Cover: A Budyko Approach

Anushka Narayanan

Cornell University

January 23, 2021
Figure: Variables of A Planet’s Orbit [https://earthobservatory.nasa.gov]
Mars’ Chaotic Obliquity

Figure: Obliquity at the north pole surface of Mars at the summer solstice. Time Axis: −20Myr to 10Myr in increments of 5Myr [7]

Figure: Change in Mars’ Obliquity
Energy Balance: Earth as an Example

Temperature Change = Energy In - Energy Out

Figure: A: Energy Balance Diagram on Earth
Budyko Equation Model

\[R \frac{\partial T}{\partial t} = Q_s(y)(1 - \alpha(y, \eta)) - (A + BT(y, t)) - C (T(y, t) - \bar{T}(t)) \]

\(Q_s \) is absorbed insolation
\(A + BT \) is emitted longwave radiation
\(C \) is energy transport across latitudes

Energy Balance: Temperature change = energy in - energy out
R denotes heat capacity of surface layer
Absorbed Insolation: Finding the Annual Average Q and Distribution

\[Q_s(y)(1 - \alpha(y, \eta)) \]

Figure: Finding Solar Constant (I) (Irradiance per Area) for a Planet [nasa.gov]

Figure: S-plot representing the distribution function of Q across the sine of latitude.
Albedo

Figure: Image produced by combining data from instruments from NASA’s Mars Global Surveyor depicting the Martian north polar ice cap.[https://mars.nasa.gov/]

\[Q_s(y)(1 - \alpha(y, \eta)) \]

Figure: Super-black material named Vantablack created by Surrey NanoSystems

Anushka Narayanan
Cornell University

Effects of Mars’ Chaotic Obliquity on Ice Cover: A Budyko Approach
Albedo Function

\[Q_s(y)(1 - \alpha(y, \eta)) \]

\(\alpha(y, \eta)\) represents the albedo \((\text{reflectivity})\) dependent on sine of latitude and the position of ice line.

Figure: Contrasting Reflectivity levels on different colored surfaces with different albedos
Emitting Longwave Radiation and Latitudinal Transport

\[
(A + BT(y, t)) \quad \text{and} \quad C(T(y, t) - \bar{T}(t))
\]

Figure: A: Energy Balance Diagram of Earth

Anushka Narayanan
Cornell University

Effects of Mars’ Chaotic Obliquity on Ice Cover: A Budyko Approach
Dynamic Ice Lines

Figure: Ice Cap Diagram: η_e and η_p on the interval $[-1, 1]$ with condition that $\eta_e \leq \eta_p$.

\[
\frac{d\eta_e}{dt} = \rho(T_c - T(\eta_e, t)),
\]
\[
\frac{d\eta_p}{dt} = \rho(T(\eta_p, t) - T_c).
\]

▶ $T_c =$ highest temp. ice is present year-round
▶ ρ determines rate of change of ice line relative to temp. change
▶ $T(\eta_e, t) > T_c$ implies degradation (poleward) of η_e
▶ $T(\eta_e, t) < T_c$ implies formation (equatorward) of η_p
Ice Cover

Figure: Different Ice Regime Scenarios. Top Left: Ice Belt around Equator, Top Right: Polar Ice Caps, Bottom Left: Ice Free, Bottom Right: Full Ice Cover (Snowball State)

Figure: Depiction of Ice Regimes on Mars at Different Obliquities. Low Obliquity shows a Large stable Ice Cap. High Obliquity shows one Ice Cap.

Anushka Narayanan
Cornell University
Effects of Mars’ Chaotic Obliquity on Ice Cover: A Budyko Approach
The final non-dimensionalized version of our model is as follows:

\[T^* (y) = \left(\frac{q}{1 + \delta} \right) \sigma_6 (y, \beta) (\alpha^* (y, \alpha)) + \delta (1 - \alpha (S(\beta))) \]

(3)

where

\[\alpha^* (y, \alpha) = \begin{cases}
1, & y < \eta_e, y > \eta_p \\
1 - \alpha/2, & y = \eta_e, y = \eta_p \\
1 - \alpha, & \eta_e < y < \eta_p
\end{cases} \]

(4)

and

\[\frac{d\eta_e}{d\tau} = \lambda (T^*(\eta_e) - 1) \quad \frac{d\eta_p}{d\tau} = -\lambda (T^*(\eta_p) - 1) \]

(5)
Fillipov System

\[
\frac{dx}{dt} = -(x + 1/2) \cdot (x - 1/2) \cdot (x - (1 - 1.1 \cdot \sin t))
\]

Figure: Simple Fillipov System (blue) with a sine function (yellow)
Table: Nondimensionalized Parameter Values for Mars

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Formula</th>
<th>Earth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1, δ_2, δ_3</td>
<td>1.19, 0.28, 0.03</td>
<td>C/B</td>
<td>1.6</td>
</tr>
<tr>
<td>q</td>
<td>1.05</td>
<td>$Q \times (1 - \alpha_1)/(A + B \times T_c)$</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0.46</td>
<td>$(\alpha_1 + \alpha_2)/2$</td>
<td>0.44</td>
</tr>
</tbody>
</table>

- α: contrast between albedos and the extent of the ice albedo
- q: radiative forcing of the planet
- δ: efficiency of the horizontal heat transport term
Nondimensionalized Parameters

Table: Non dimensionalized Parameter Values for Mars

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Formula</th>
<th>Earth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_1, \delta_2, \delta_3$</td>
<td>1.19, 0.28, 0.03</td>
<td>C/B</td>
<td>1.6</td>
</tr>
<tr>
<td>q</td>
<td>1.05</td>
<td>$Q \times (1 - \alpha_1)/(A + B \times T_c)$</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0.46</td>
<td>$(\alpha_1 + \alpha_2)/2$</td>
<td>0.44</td>
</tr>
</tbody>
</table>

- α: contrast between albedos and the extent of the ice albedo feedback
Nondimensionalized Parameters

Table: Non dimensionalized Parameter Values for Mars

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Formula</th>
<th>Earth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_1, \delta_2, \delta_3$</td>
<td>1.19, 0.28, 0.03</td>
<td>C/B</td>
<td>1.6</td>
</tr>
<tr>
<td>q</td>
<td>1.05</td>
<td>$Q \ast (1 - \alpha_1)/(A + B \ast T_c)$</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0.46</td>
<td>$(\alpha_1 + \alpha_2)/2$</td>
<td>0.44</td>
</tr>
</tbody>
</table>

- α: contrast between albedos and the extent of the ice albedo feedback
- q: radiative forcing of the planet
Nondimensionalized Parameters

Table: Non dimensionalized Parameter Values for Mars

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Formula</th>
<th>Earth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_1, \delta_2, \delta_3$</td>
<td>1.19, 0.28, 0.03</td>
<td>C/B</td>
<td>1.6</td>
</tr>
<tr>
<td>q</td>
<td>1.05</td>
<td>$Q \ast (1 - \alpha_1)/(A + B \ast T_c)$</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0.46</td>
<td>$(\alpha_1 + \alpha_2)/2$</td>
<td>0.44</td>
</tr>
</tbody>
</table>

- α: contrast between albedos and the extent of the ice albedo feedback
- q: radiative forcing of the planet
- δ: efficiency of the horizontal heat transport term
Observations: Looking at α

Figure: Stable Ice Cap at $\alpha = 0$ for δ_1 using the sine function

Figure: Stable Ice Cap at $\alpha = 0$ for δ_2 using the sine function

Figure: Stable Ice Cap at $\alpha = 0$ for δ_2 using Laskar data
Observations: Looking at α

Figure: Stable Ice Cap at $\alpha = 0$ for δ_1 using the sine function

Figure: Stable Ice Cap at $\alpha = 0$ for δ_2 using the sine function

Figure: Stable Ice Cap at $\alpha = 0$ for δ_2 using Laskar data

Constant ice cap with small values of albedo contrast (α) with oscillations
Observations: Comparing Laskar Data and the sine Function for q

Figure: Ice Cap Regimes for $q = [1.2,1.55]$ for δ_2 using Laskar Data

Figure: Ice Cap Regimes for $q = [1.3,1.4]$ for δ_2 using the sine Function
Observations: Comparing δ_2 and δ_3 for q

Figure: Ice Cap Regimes for $q = [1.3,1.4]$ for a larger heat efficiency (δ_2) using the sine Function

Figure: Ice Cap Regimes for $q = [1.15,1.5]$ for a lower heat efficiency (δ_3) using the sine Function
Observations: Looking at $q = [1.6-1.95]$

Figure: Ice Cap Regimes for $q = [1.15,1.5]$. Oscillations between Stable Partial Ice Cover and Ice Free Regimes
Observations: Looking at $q = [1.6-1.95]$

Figure: Ice Cap Regimes for $q = [1.15,1.5]$. Oscillations between Stable Partial Ice Cover and Ice Free Regimes

Presence of oscillations between stable ice cover and ice free regimes.
Albedo Contrast and Horizontal Heat Efficiency

Figure: Plot of Local Minimum Point Values of Solutions

Figure: Plot of Local Maximum Point Values of Solutions
Overall Discussion Ideas

- Constant ice cap with oscillations with small values of α (albedo contrast).
- Specific interval in the q (radiative forcing) parameter space where stable oscillations are seen. Oscillations between stable ice cover and ice free regimes seen with higher values of q.
- Lower magnitudes of δ (efficiency of horizontal heat transport) show more instances of stable ice caps.
- No presence of stable ice belt (poles ice free).
Constant ice cap with oscillations with small values of α (albedo contrast)

Specific interval in the q (radiative forcing) parameter space where stable oscillations are seen. Oscillations between stable ice cover and ice free regimes seen with higher values of q.

Lower magnitudes of δ (efficiency of horizontal heat transport) show more instances of stable ice caps.

No presence of stable ice belt (poles ice free).
Overall Discussion Ideas

- Constant ice cap with oscillations with small values of α (albedo contrast)
- Specific interval in the q (radiative forcing) parameter space where stable oscillations are seen. Oscillations between stable ice cover and ice free regimes seen with higher values of q.
- Lower magnitudes of δ (efficiency of horizontal heat transport) show more instances of stable ice caps.
- No presence of stable ice belt (poles ice free).
Overall Discussion Ideas

- Constant ice cap with oscillations with small values of α (albedo contrast)
- Specific interval in the q (radiative forcing) parameter space where stable oscillations are seen. Oscillations between stable ice cover and ice free regimes seen with higher values of q.
- Lower magnitudes of δ (efficiency of horizontal heat transport) show more instances of stable ice caps
Overall Discussion Ideas

- Constant ice cap with oscillations with small values of α (albedo contrast)
- Specific interval in the q (radiative forcing) parameter space where stable oscillations are seen. Oscillations between stable ice cover and ice free regimes seen with higher values of q.
- Lower magnitudes of δ (efficiency of horizontal heat transport) show more instances of stable ice caps
- No presence of stable ice belt (poles ice free)
Next Steps

Looking at longer time scale data of 5Gyr
Accounting for diffusion of solutions in our sinusoidal function.
How mean obliquity and standard deviation increase over 5Gyr
Next Steps

- Looking at longer time scale data of 5Gyr
Next Steps

- Looking at longer time scale data of 5Gyr
- Accounting for diffusion of solutions in our sinusoidal function. How mean obliquity and standard deviation increase over 5Gyr
References

Jacques Laskar, A.C.M. Correia, Mickael Gastineau, Fr´ed´eric Joutel, Benjamin Levrard, et al.. Long term evolution and chaotic diffusion of the insolation quantities of Mars.. 2004. ¡hal-00000860¡

Special Thanks to Dr. Alice Nadeau, Kath Landgren and NCUWM
Organizers
Thank You!