Abstract

To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditional matrix-based frameworks extract the most relevant features of vectorized data using the matrix-SVD. However, we may lose crucial high-dimensional relationships in this process. To facilitate efficient multidimensional feature extraction, we propose a projection-based classification algorithm using the t-SVD, a tensor-based extension of the matrix-SVD. We apply our algorithm to the StarPlus fMRI dataset.

Motivation - Matrix vs. Tensor

Matrix Method

- Uses matrix Singular Value Decomposition (SVD)
- Widely used in image processing
- Cannot identify relationships in higher dimensions

Tensor Method

- Better representation of high-dimensional structure
- Flexibility in choosing a transformation M

Background

- The mode-k product \otimes refers to the multiplication of a matrix M along the kth dimension of the tensor.
- \star_{M} product: \star Given tensors $A \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_M}$, $B \in \mathbb{R}^{m_1 \times m_2 \times \ldots \times m_M}$, and an invertible $M \in \mathbb{R}^{n_1 \times m_1}$, $C = A \star B = (A \Delta B) \times_M M^{-1}$ where $C \in \mathbb{R}^{n_2 \times m_2 \times \ldots \times n_M}$.
- Figure 2 shows the t-SVD of a tensor A.

Classification via Local t-SVD

We extend the algorithm in [7] to higher-order tensors and the \star_M-product.

Preprocessing

- Split training data A into c distinct classes: A_1, A_2, \ldots, A_c.
- For each class i, compute t-SVD and store first k basis elements: $A_i = U_i s_i S_i V_i^T$, U_i, s_i, V_i.

Classifying a Test Image \mathbf{T}

- Project \mathbf{T} onto space spanned by each class basis: $P_i = U_i s_i U_i^T \mathbf{T}$, for $i = 1, \ldots, c$.
- Categorize \mathbf{T} as the class whose projection was "closest" to the original image: $i^* = \arg\min_{i} \| P_i - \mathbf{T} \|_F$.

To measure the performance of our algorithm, accuracy = $\frac{\# \text{correctly classified images}}{\# \text{images}}$.

Intuition - MNIST [6]

Tensor Method

Figure 3: Illustration of classifying two digits of the MNIST Dataset using the local t-SVD algorithm. Bases U_0, U_1 are generated by digits from class 0 and class 1, respectively. We project \mathbf{T} onto the spaces spanned by U_0 and U_1 and obtain P_0 and P_1, respectively.

Power of Tensor Representations

Figure 4: Test accuracy with respect to number of basis elements for various choices of \star_M-product.

- Traditional matrix method overlooks the intrinsic characteristics of fMRI images as brain slices over time are very interconnected.
- Tensor method outperforms matrix method in test accuracy with:
 - appropriate choice of transformation matrix M
 - small number of basis elements

Impact of Brain Regions

We also experiment with an ROI-dependent M calculated from the most prominent ROIs in each trial.

Conclusions and Future Work

- Local t-SVD classification approach outperforms the equivalent matrix-based approach.
- The most important brain regions for classification vary depending on the human subject.
- Explore applications in disease prevention and diagnosis by utilizing other fMRI datasets.
- Compare to other tensor-based frameworks such as Higher-Order SVD [5].

Reference

Tensor decompositions and applications.

Tensor evolution methods for brain functional and structural data analysis.
Journal of Medical Systems, 39(8), 2015.

Tensor-based approaches to fMRI classification.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10390, 2017.

MNIST handwritten digit database.
https://yann.lecun.com/exdb/mnist/

Tensor-based approaches to fMRI classification.
In 2017 IEEE 10th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017.