

# Partial Sums in Reverse Lexicographic Ordering **Rachel Leslie and Dr. Anna Pun**

**Baruch College Department of Mathematics** 



### Partitions

- A **Partition** is a way of writing an integer *n* as a sum of other integers in decreasing order
- **Reverse Lexicographic Ordering** is a way to order partitions from "biggest" to "smallest"
- *Example*: 7, 61, 52, 511, 43, 421, ...

# Symmetric Groups

A Symmetric Group  $S_n$  is a group of all permutations on *n* symbols The symmetric group S<sub>n</sub> is frequently written in **Cycle** Notation, and each has a Cycle Type • *Example*: (12345) has cycle type 5, (123)(45) has cycle type 32 and (1)(2)(3)(4)(5) has cycle type 11111 Finally, each permutation has a **Parity**, which can be determined using the **Signum Function**  $\operatorname{sgn}(\sigma) = (-1)^{n-l(\sigma)}$ 

# **Building Partitions**

- Previous partitions can be used to build later  $\bullet$ partitions
- We can represent this graphically with partitions on  $\bullet$ x-axis and partial sums on y-axis

Graph of n = 7, n = 4 in blue



where  $l(\sigma)$  represents the length of the partition

## **Connecting the Two Ideas**

- Each cycle type of a permutation of *n* is a partition of *n*
- The signum function can assign a positive or negative 1 to each partition
  - $\sigma = (123)(45)$  has cycle type 32 and length 2  $\rightarrow$  $sgn(\sigma) = (-1)^{5-2} = (-1)^3 = -1 \rightarrow$  The partition is assigned -1 •  $\sigma = (12345)$  has cycle type 5 and length  $1 \rightarrow$
  - $sgn(\sigma) = (-1)^{5-1} = (-1)^4 = 1 \rightarrow$  The partition is assigned +1

# **Proposition by Euler**

- The sum of the signs of each partition is always nonnegative
- More specifically, the sum always equals the number of partitions with distinct odd parts

| λ      | 5 | 41 | 32 | 311 | 221 | 2111 | 11111 | SUM |
|--------|---|----|----|-----|-----|------|-------|-----|
| Sgn(λ) | 1 | -1 | -1 | 1   | 1   | -1   | 1     | 1   |



Notice that parts of previous graphs match up perfectly to the later graphs, yet others are flipped to form the new graphs

## Result

- When using a previous partition to construct a new partition that starts with an even number, the sign of the new partition is the negation of the sign of the previous partition
- The smallest partition, the partition made entirely of ones, always has a sign of 1 because  $n = l(\lambda)$ The next smallest partition replaces two ones with a two, thus making the length one shorter, resulting in a negative sign This pattern continues for all partitions, resulting in the phenomena seen in the graphs

#### **Conjecture by Sheila Sundaram**

Using Reverse Lexicographic Ordering and starting at the smallest partition, each partial sum of the partitions is always nonnegative

| λ               | 5 | 41 | 32 | 311 | 221 | 2111     | 11111        |
|-----------------|---|----|----|-----|-----|----------|--------------|
| Sgn(λ)          | 1 | -1 | -1 | 1   | 1   | -1       | 1            |
| Partial<br>Sums | 1 | 0  | 1  | 2   | 1   | 0        | 1            |
|                 | ← | ←  | ←  | ←   | ←   | <b>~</b> | $\leftarrow$ |

#### Conclusion

This conjecture, although still unsolved, will help us uncover the significance of reverse lexicographic ordering and discover possible connections between partial sums and a combinatorial object