Partitions

- A Partition is a way of writing an integer n as a sum of other integers in decreasing order
- Reverse Lexicographic Ordering is a way to order partitions from "biggest" to "smallest"
- Example: 7, 61, 52, 511, 43, 421, ...

Symmetric Groups

- A Symmetric Group S_{n} is a group of all permutations on n symbols
- The symmetric group S_{n} is frequently written in Cycle Notation, and each has a Cycle Type
- Example: (12345) has cycle type 5, (123)(45) has cycle type 32 and (1)(2)(3)(4)(5) has cycle type 11111
- Finally, each permutation has a Parity, which can be determined using the Signum Function $\operatorname{sgn}(\sigma)=(-1)^{n-l(\sigma)}$
where $\mathrm{l}(\sigma)$ represents the length of the partition

Connecting the Two Ideas

- Each cycle type of a permutation of n is a partition of n
- The signum function can assign a positive or negative 1 to each partition
- $\sigma=(123)(45)$ has cycle type 32 and length $2 \rightarrow$ $\operatorname{sgn}(\sigma)=(-1)^{5-2}=(-1)^{3}=-1 \rightarrow$ The partition is assigned -1
- $\sigma=(12345)$ has cycle type 5 and length $1 \rightarrow$
$\operatorname{sgn}(\sigma)=(-1)^{5-1}=(-1)^{4}=1 \rightarrow$ The partition is assigned +1

Proposition by Euler

- The sum of the signs of each partition is always nonnegative
- More specifically, the sum always equals the number of partitions with distinct odd parts

λ	5	41	32	311	221	2111	11111	SUM
$\operatorname{Sgn}(\lambda)$	1	-1	-1	1	1	-1	1	1

Conjecture by Sheila Sundaram

- Using Reverse Lexicographic Ordering and starting at the smallest partition, each partial sum of the partitions is always nonnegative

λ	5	41	32	311	221	2111	11111
$\operatorname{Sgn}(\lambda)$	1	-1	-1	1	1	-1	1
Partial Sums	1	0	1	2	1	0	1
\leftarrow		\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow

Building Partitions

- Previous partitions can be used to build later partitions
- We can represent this graphically with partitions on x-axis and partial sums on y-axis

Graph of $n=7, n=4$ in blue

311113211322331
Graph of $n=7, n=3$ in blue

- Notice that parts of previous graphs match up perfectly to the later graphs, yet others are flipped to form the new graphs

Result

- When using a previous partition to construct a new partition that starts with an even number, the sign of the new partition is the negation of the sign of the previous partition
- The smallest partition, the partition made entirely of ones, always has a sign of 1 because $n=l(\lambda)$
- The next smallest partition replaces two ones with a two, thus making the length one shorter, resulting in a negative sign
- This pattern continues for all partitions, resulting in the phenomena seen in the graphs

Conclusion

- This conjecture, although still unsolved, will help us uncover the significance of reverse lexicographic ordering and discover possible connections between partial sums and a combinatorial object

