MATHEMATICALLY MODELING THE INTERACTIONS OF COMMUNITY- AND HOSPITAL-ACQUIRED C. DIFFICILE INFECTIONS

Edmonde Olongo¹ & Sara Gongora²

Advised by: Dr. Cara Sulyok³

¹Dominican University, River Forest, IL; ² College of DuPage, Glen Ellyn, IL; ³ Lewis University, Romeoville, IL

BACKGROUND

- Clostridioides difficile (C. difficile) bacteria spread among humans via fecal-oral route
- Colonized in large intestine and treated with antibiotics
- Can cause illnesses including diarrhea, colon perforation, emergency colectomy, and death
- Symptomatic and asymptomatic patients shed spores
- Spores are an inactive form and have protective coating that allows them to live months and years on surfaces and in food, water, and soil
- Spread by touching a contaminated surface
- Greatest increase in cases is in hospital, but discharged patients can spread the disease in the community

PARAMETERS

Parameter	Description [Units]	Reference Value
a_R	a_R proportion of individuals admitted into R [dimensionless]	
a_S		
a_C	2 01 01 11 1 1 20 11 1 01 11 1 1 1	
a_D	2 01 11 11 1 12 11 1 15 11 1 1 1	
k_R		
k		
k_D	discharge rate of D [day ⁻¹]	0.068
α		
θ	gut restoration of colonization resistance rate [day ⁻¹]	0.033
ε	0.1	
φ	disease rate of colonized individuals with insufficient immune response $[day^{-1}]$	0.024
РСН	shedding rate of C into P_H [$spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}$]	0.057
$ ho_{CL}$	shedding rate of C into P_L [$spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}$]	0.029
ρ_{DH}	shedding rate of D into P_H [$spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}$]	0.123
ρ_{DL}	shedding rate of D into P_L [$spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}$]	0.063
σ	proportion of P_H and P_L spores killed due to disinfection upon discharge [individuals ⁻¹]	
μ	rate of P_H spores killed due to extra cleaning $[day^{-1}]$	0.66
K	half-saturation constant [spores · cm ⁻²]	7.5
β	colonization rate upon transfer of spores from a fomite [day ⁻¹]	0.338
ω	weighting constant for high-touch fomites [dimensionless]	1.96
α_C	antibiotic prescription rate in the community $[day^{-1}]$	0.0086
β_C	colonization rate upon transfer of spores in a community $[day^{-1}]$	0.0012
γ	contamination rate of food [day ⁻¹]	
РСС	shedding rate of C into P_C $[spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}]$	0.84
ρ_{DC}	shedding rate of D into P_C $[spores \cdot cm^{-2} \cdot individuals^{-1} \cdot day^{-1}]$	1.82
K_F	carrying capacity of F [proportion]	1

VARIABLES AND SCHEMATIC

 R_H = resistant individuals in hospital (no recent antibiotics)

 S_H = susceptible individuals in hospital (recent antibiotics)

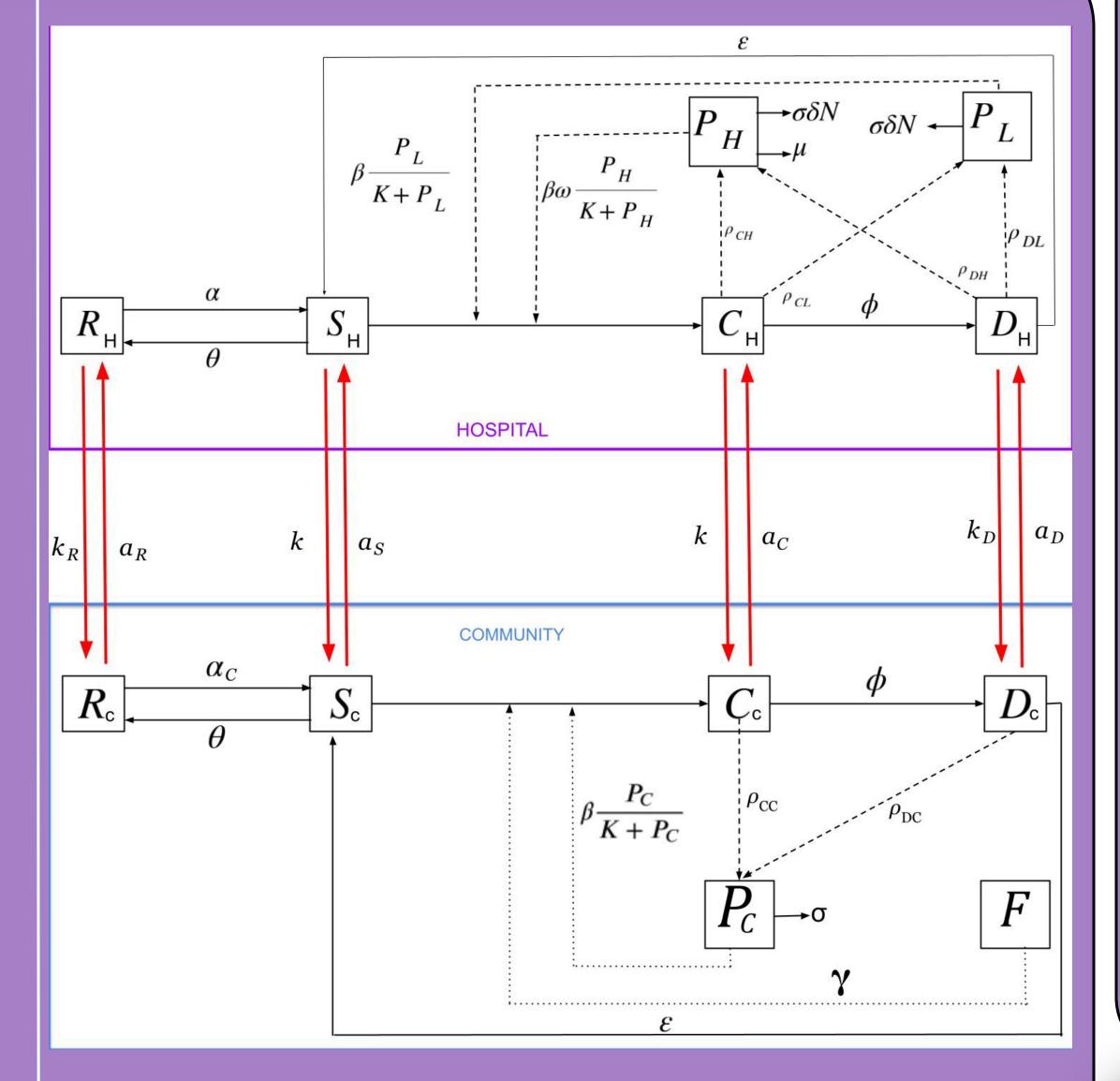
 C_H = colonized individuals in hospital (asymptomatic)

 D_H = diseased individuals in hospital (symptomatic)

 $P_H = C$. difficile spores on high-touch frequency surfaces in hospital

 P_L = *C. difficile* spores on low-touch frequency surfaces in hospital

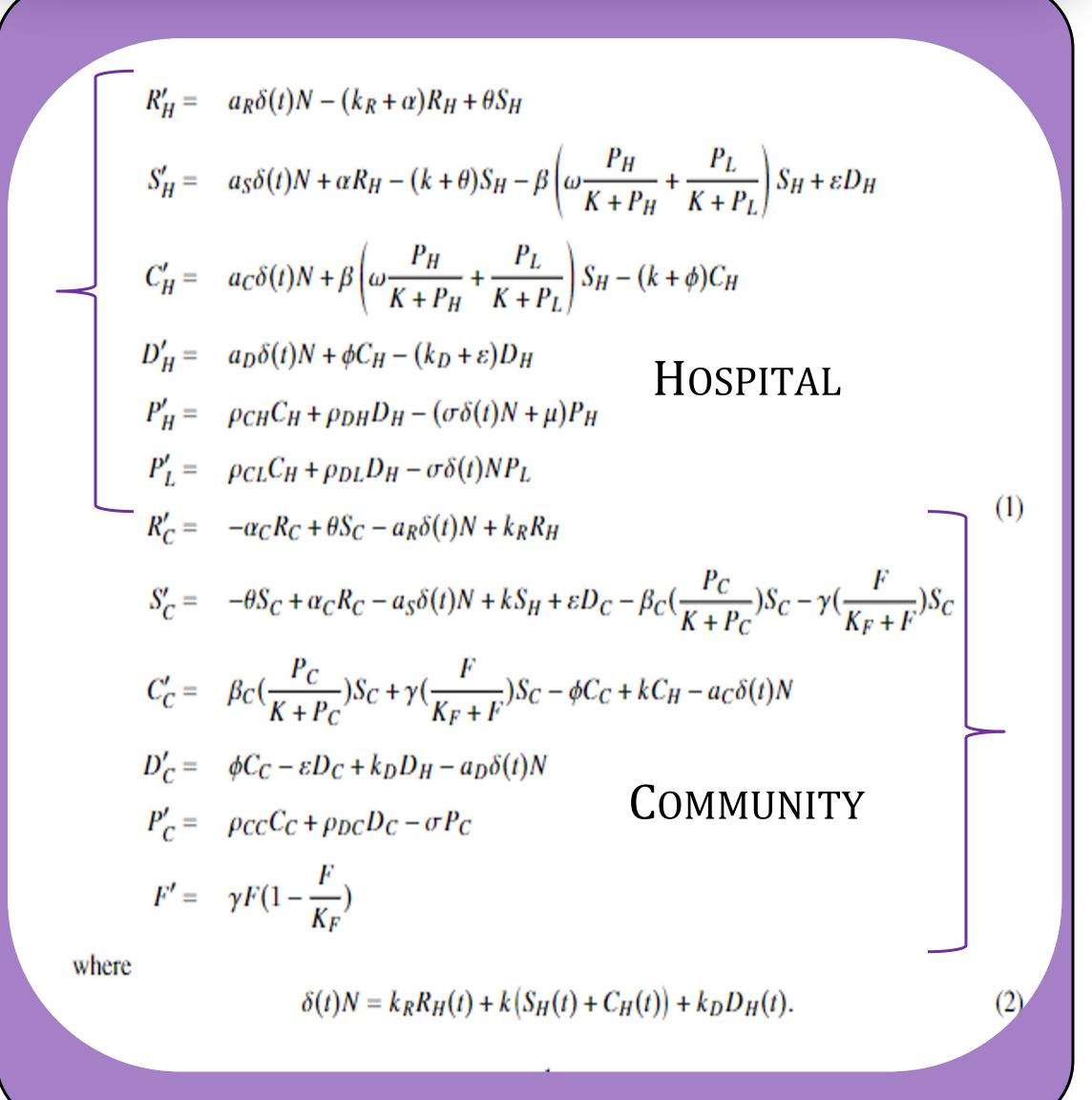
 R_C = resistant individuals in community


 S_C = susceptible individuals in community

 C_C = colonized individuals in community

 D_C = diseased individuals in community

 P_C = C. difficile spores on surfaces in community


F = C. difficile in food and water sources

Transfer of individuals

- Interaction causing changes

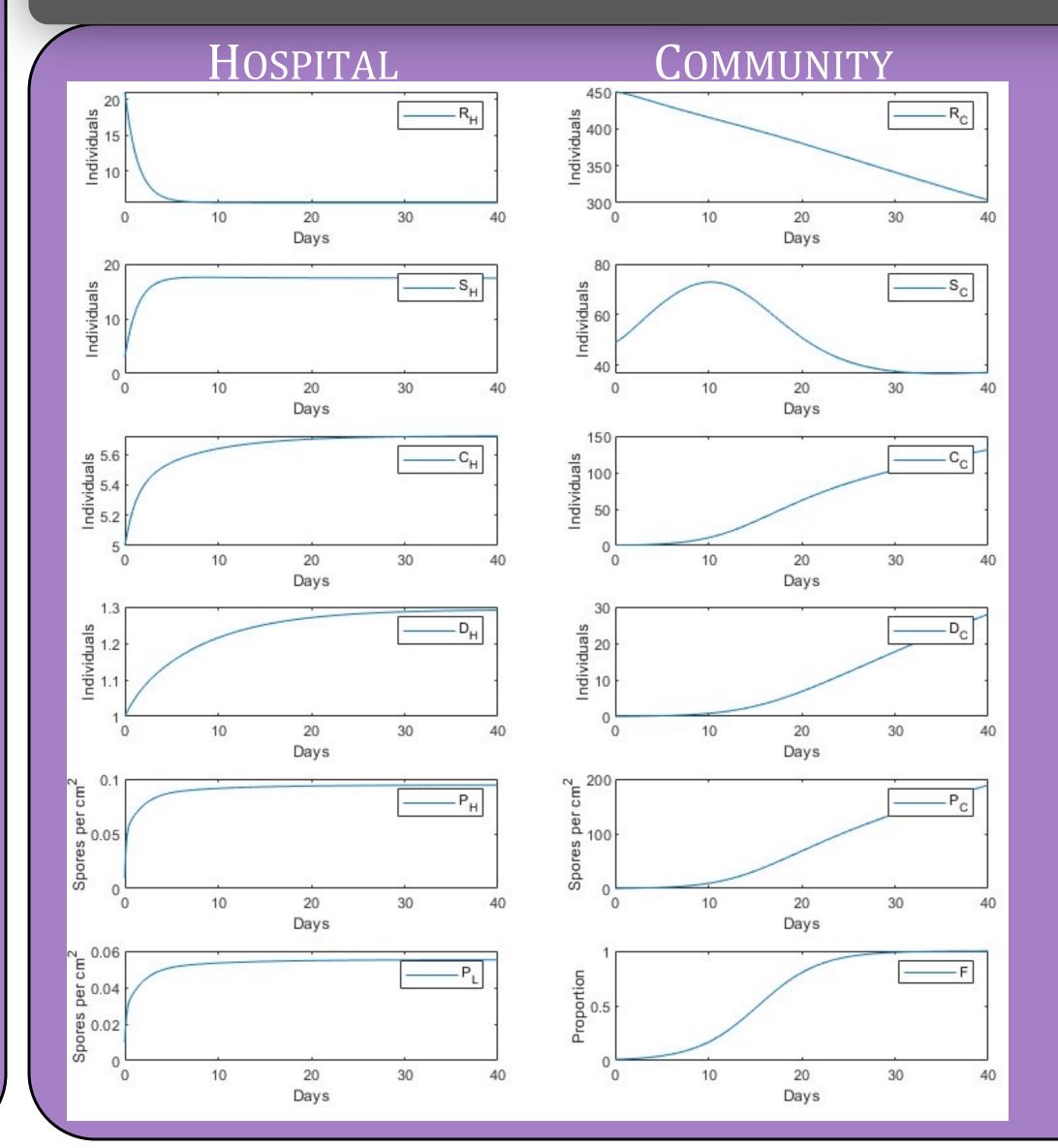
System of Differential Equations

FUTURE WORK

- Include a testing and removal term for contaminated food and water
- Explore strategies to mitigate *C. difficile* spread in the hospital and community
- Identify potential factors that could lead to a *C. difficile* outbreak in the community

Model Simulations and Results

 $R_{C} = 450$


 $S_C = 49$

 $C_C = 1$

 $D_C = 0$

 $P_{C} = 0.01$

F = 0.01

$S_H = 3$ Incidence of C 32.13 $C_H = 5$ due to high-touch 7.40 Incidence of D 24.67	TIAL CONDITIONS $R_H = 21$	Hospital		
$C_H = 5$ due to low-touch 7.40 Incidence of D 24.67			32.13 24.73	
Incidence of D 24.67	$C_H = 5$		7.40	
$D_H - 1$	$D_H = 1$	Incidence of D	24.67	

INCIDENCE RATES

Communit	Community		
Incidence of C	0.0104		
due to fomites	0.0001		
due to food	0.0103		
Incidence of D	0.0036		

SELECTED REFERENCES

- [1] Durham, et al. Emerging Infectious Diseases, 2016.
- [2] Khanna, et al. Infection and Drug Resistance, 2014.
- [3] Lund, et al. Foodborne Pathogens and Disease, 2015.
- [4] Skov, et al. Journal of Hospital Infection, 2009.
- [5] Sulyok and Fox, et al. *Mathematical Biosciences*, 2021.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation through the LSAMP Program under Award Number 1911271. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

